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Big Earth Data in Support of the Sustainable Development Goals (2020)

The Sustainable Development Goals (SDGs), at the 
core of Transforming our world: the 2030 Agenda for 
Sustainable Development  adopted by the 193 Member 
States of the United Nations in September 2015, represent 
commitment to address the tri-dimensional social, economic 
and environmental issues mankind faces, in the most 
comprehensive way in human history, with the aim of 
achieving sustainability.

China is fully committed to the 2030 Agenda for Sustainable 
Development. As progress has been made across the board, 
there have been "early harvests" of multiple SDGs. The goal 
to end extreme poverty will be achieved within this year, 
for example. China is also fully engaged in international 
cooperation in SDGs, sharing knowledge and experience 
with and offering assistance, as much as we can, to other 
developing countries.

The important role science and technology can play, 
already widely recognized, is reaffirmed as vital to SDG 
transformations as well as global development and change 
in the Global Sustainable Development Report 2019.  The 
Chinese Academy of Sciences (CAS), as a member of the 
global scientific community, has worked vigorously, through 
science-policy-society interface, to provide solutions and 
support, domestically and internationally, to address the new 
demands and challenges that humanity must address before 
the lofty Sustainable Development Goals can be achieved.

SDGs are gigantic, complex and diverse systems with 
dynamic interactions amongst themselves. Fundamental to 
their implementation are effective monitoring and evaluation, 
where many difficulties remain. The Global Indicator 
Framework for the Sustainable Development Goals was 
adopted in 2017 by the United Nations as voluntary and 
nonbinding. This Framework, however, has to be further 

refined. With only ten years between now and 2030, the 
prospect of achieving the SDGs is not bright, not to mention 
the outbreak of COVID-19, that has brought unprecedented 
challenge to this effort.

The CAS Big Earth Data Science Engineering Program 
(CASEarth) has studied, since 2018, six SDGs: SDG 2 
(Zero Hunger), SDG 6 (Clean Water and Sanitation), SDG 
11 (Sustainable Cities and Communities), SDG13 (Climate 
Action), SDG 14 (Life below Water) and SDG 15 (Life on 
Land), especially focusing on those indicators where data and 
methods can be improved. CASEarth issues annual reports, 
Big Earth Data in Support of the Sustainable Development 
Goals,  and leads CAS efforts to support the implementation 
of the SDGs. 

The 2020 report discusses data integration, indicator 
development and sustainability evaluation concerning the 
six SDGs through 26 case studies. Each case presents data 
products, methods and models and how they can support 
policy-making, through five parts—the background, data 
used in the case, methodology, results and analysis, and 
outlook, showcasing the value and prospects of applying 
Big Earth Data-enabled technologies and methods to the 
evaluation of SDGs.

In the Sustainable Development Goals Report 2019, United 
Nations Secretary-General António Guterres called for 
deeper, faster, and more ambitious responses to achieve 
the social and economic transformations required for the 
implementation of SDGs. The report laid special emphasis on 
better use of data, a digital transformation while harnessing 
science, technology and innovation, and more intelligent 
solutions. Technologies, especially data, will therefore have 
to play a more important role in achieving SDGs.

Foreword
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Foreword

Bai Chunli
President, Chinese Academy of Sciences
Head of Leadership Group of CASEarth

The United Nations "Technology Facilitation Mechanism" (TFM) 
is fully consistent with China's strategy of driving development 
with innovation. China and many other developing countries face 
major challenges and pressure as we pursue SDGs with limited 
capacity for data collection and processing, and for monitoring and 
evaluation of SDG indicators, where Big Earth Data has a unique 
role to play.

2020 marks the 75th anniversary of the United Nations and the start 
of the Decade of Action to deliver the Sustainable Development 
Goals by 2030. China will continue to work with other countries 
to advance the 2030 Agenda and contribute to achieving the SDGs 
as scheduled. Chinese scientists wish to present this report as part 
of China's contribution and remain committed to collaboration and 
sharing with the rest of the world. Finally, I would like to express 
my respect and appreciation for the CASEarth team of scientists led 
by Academician Guo Huadong for the effort they have made toward 
SDGs in the spirit of science and innovation. 

Preface
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Big Earth Data in Support of the Sustainable Development Goals (2020)

Almost five years after the adoption of Transforming our 
world: the 2030 Agenda for Sustainable Development  by 
the United Nations, the lack of data on indicators is still 
holding back progress in the scientific evaluation of global 
implementation of the Sustainable Development Goals 
(SDGs). The coronavirus pandemic since early 2020 has 
made the challenges countries face on their way toward the 
SDGs all the more daunting.

To support global SDG implementation, the United Nations 
launched the "Technology Facilitation Mechanism", 
encompassing three parts—the Interagency Task Team, 
including the 10-Member Group, the collaborative Multi-
stakeholder Forum and an online platform. One of the 
most important and pressing issues now is to achieve 
breakthroughs in data and methodology for the monitoring of 
SDG indicators.

Big Earth Data enables macroscopic, dynamic and objective 
monitoring, by making it possible to integrate and analyze 
data on the land, sea, atmosphere and human activities to give 
a holistic understanding of a vast region. This technology can 
support policy-making by providing information, at a large 
scale with cyclical changes, on multiple SDG indicators closely 
related to the Earth's surface, environment and resources.

Our goal is to convert Big Earth Data to information relevant 
to SDGs, construct and integrate such data to support SDG 
indicators, study the connections and coupling between SDGs 
and then serve as a tool for SDG-related policy-making. This 
year, we selected six SDGs to study, based on the advantages 
of Big Earth Data and features of SDG indicators.

Big Earth Data can contribute to the evaluation of the six 
SDGs in three ways: by providing data products, new 
evaluation methodologies and models, and case studies to 
monitor progress and inform policy-making.

In this 2020 report, 26 typical cases at local, national, 
regional and global scales are presented to showcase 

the studies on and monitoring results of 18 SDG targets, 
including 24 data products, 13 methodologies and 19 results 
that are of value to policy-making. The cases cover the 
topics of tracking the progress of land degradation neutrality, 
biodiversity conservation, urban sustainability assessment, 
spatial distribution of vegetated wetlands, offshore ecosystem 
health assessment in China, and global forest cover. They 
all point to the great value of Big Earth Data and related 
technologies and methodologies as new analytical tools with 
which we will be able to have deeper understanding of and 
make better policies on the SDGs and related issues.

This report could not have been completed without the 
leadership and support from the Chinese Academy of 
Sciences, the Ministry of Foreign Affairs, the Ministry of 
Science and Technology, and other ministries. We are grateful 
for the valuable opinions shared by leaders and experts 
from the National Development and Reform Commission, 
the Ministry of Natural Resources, the Ministry of Ecology 
and Environment, the Ministry of Housing and Urban-
Rural Development, the Ministry of Transport, the Ministry 
of Water Resources, the Ministry of Agriculture and Rural 
Affairs, the National Health Commission, the Ministry of 
Emergency Management, the National Bureau of Statistics 
and the National Forestry and Grassland Administration, 
Finally, our utmost appreciation goes to every scientist in the 
team for their hard work.

Preface

Guo Huadong
CAS Academician

Chief Scientist of CASEarth 
Member of the UN 10-Member Group to support the TFM for SDGs 
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Foreword

Five years after the adoption of the 2030 Agenda for 
Sustainable Development, the implementation of Sustainable 
Development Goals (SDGs) is still constrained, to a 
certain extent, by the lack of data on progress, inadequate 
statistical methods, the diverse issues concerning SDGs 
localization, and the multitude of indicators that are both 
intertwined and mutually restrictive. Big Earth Data, an 
innovative technology, can serve as a new key to unlocking 
Earth's secrets and a new engine to drive discoveries. The 
2019 report Big Earth Data in Support of the Sustainable 
Development Goals  showcased the contributions this 
technology can make to sustainable development. This 
year's report focuses on Big Earth Data's contributions to 
monitoring and evaluating six SDGs—SDG 2 (Zero Hunger), 
SDG 6 (Clean Water and Sanitation), SDG 11 (Sustainable 
Cities and Communities), SDG 13 (Climate Action), SDG 14 
(Life below Water), and SDG 15 (Life on Land)—through 
data products, methodologies and models, and policy-making 
support.

With regard to SDG 2 (Zero Hunger), the 
2020 report focuses on Indicator 2.2.1 
(Prevalence of stunting among children 
under 5 years old) and Indicator 2.4.1 
(Proportion of agricultural area under 

productive and sustainable agriculture), closely related to the 
demand and supply of food. It presents a creative technology 
that integrates multi-sourced Big Earth Data for producing 
scientific data and evaluating indicators. Key findings and 
outcomes include: the creation of a model to estimate yield 
gap, the conclusion that China realized SDG 2.2 in 2017 in 
terms of the rate of under-five stunting, and the conclusion 
that national grain output will meet the consumption 
estimates for 2030 if yield potential of wheat and rice can be 
achieved in their biggest production areas. It recommends for 
policy makers the key areas for further reduction in the rate 
of under-five stunting, a land and water resources distribution 
plan for increasing potential grain areas, and key regions for 
sustainable grain production with reduced use of chemical 
fertilizers. The report presents Big Earth Data's potential 
for SDG 2 monitoring and evaluation and its strengths in 
supporting the achievement of Zero Hunger.

With regard to SDG 6 (Clean Water and 
Sanitation), the report presents Big Earth 
Data-enabled methods of monitoring and 
evaluation of SDG 6.3.2 (Proportion of 
bodies of water with good ambient water 

quality), SDG 6.4.2 (Level of Water Stress, LWS), and SDG 
6.6.1 (Change in the extent of water-related ecosystems over 
time), focusing on water resources, water environment and 
water-related ecosystems, and cases of their application at 
the local, national and regional levels. Datasets produced 
include: datasets of 86 Ramsar Sites water body distribution 
in Asia, Europe, and Africa (2000-2018); water transparency 
in China's lakes (2000-2019); and mangrove forests and 
Spartina alterniflora in China (2015 and 2018). New method 
and model include: a method to monitor and evaluate 
transparency of large lakes and a model for level of water 
stress assessment with coupling glacier module. It concludes 
that lake transparency has improved, mangrove forests have 
recovered, invasion of Spartina alterniflora is under control, 
and the level of water stress has worsened in the Shule River 
basin in China. These outcomes can inform policy-making 
in China and the rest of the world on water environment 
monitoring and management, optimal distribution of water 
resources and protection of wetlands.

With regard to SDG 11 (Sustainable 
Cities and Communities), the report 
presents the monitoring and evaluation of 
six indicators under SDG 11, including 
SDG 11.1.1 (informal settlements), SDG 

11.2.1 (convenient access to public transport), SDG 11.3.1 
(urbanization), SDG 11.5.1/SDG 11.5.2 (urban disasters), 
and SDG 11.7.1 (open public space), and multiple SDG 
11 indicators at the provincial level in China, all enabled 
by Big Earth Data. The outcomes include production of 
datasets, such as high-resolution gridded population data 
by age and gender (2015 and 2018), an impervious surface 
dataset of 433 Chinese cities with 30 m resolution (1990-
2018), and an integrated assessment dataset of multiple 
indicators of Chinese cities covering public transportation, 
urbanization, disaster, environment and urban open public 
space; the creation of deep learning network model to 

Executive Summary

Executive Summary
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Big Earth Data in Support of the Sustainable Development Goals (2020)

identify shantytowns and disasters; and the proposal of 
a new indicator—the ratio of Economic Growth Rate to 
Land Consumption Rate (EGRLCR), which will expand 
SDG 11. The report concludes that urban open public space 
has increased continuously since 2015, population with 
easy access to public transportation has grown by 16.28%, 
challenges remain in coordinating urbanization, China has 
stronger capacity for disaster prevention and reduction, and 
losses caused by natural disasters have dropped significantly 
on the whole. The results of monitoring and comprehensive 
evaluation of SDG 11 indicators at the provincial level 
in China can be used as a basis for monitoring and 
making policies on urban inclusion, security, land use and 
environment and finding a Chinese solution to sustainable 
urban development in the world.

Wi t h  r e g a r d  t o  S D G  1 3  ( C l i m a t e 
Action), this report focuses on Target 
13.1 (Strengthen resilience and adaptive 
capacity to climate-related hazards and 
natural disasters in all countries) and 

Target 13.2 (Integrate climate change measures into national 
policies, strategies and planning) and presents applications 
of Big Earth Data in monitoring SDG 13 and assessing 
progress. The findings and deliverables include: in the area of 
climate-related hazards and natural disasters, the generation 
of datasets on the frequency and intensity of extreme high-
temperature events and heatwaves in China, bringing to light 
a marked upward trend in such events since the late 1990s; 
in the area of climate change response, projections on how 
climate change would impact crop phenology in China, to 
provide decision support for response to climate change 
in the interest of food security by forecasting, with a high 
degree of probability, a forward shift in the anthesis and 
maturation of wheat and maize.

With regard to SDG 14 (Life Below 
Water), this report focuses on Target 14.1 
(By 2025, prevent and significantly reduce 
marine pollution of all kinds, in particular 
from land-based activities, including 

marine debris and nutrient pollution) and Target 14.2 (By 
2020, sustainably manage and protect marine and coastal 
ecosystems to avoid significant adverse impacts, including 
by strengthening their resilience, and take action for their 
restoration in order to achieve healthy and productive oceans) 
and presents the following three case studies where the Big 
Earth Data technology is applied to the dynamic monitoring 

and integrated assessment of various parameters at the 
national (China) and local (typical marine areas) levels with 
spatiotemporal data fusion and model simulation, among 
other methodologies: distribution and variation of marine 
debris and microplastics in China's coastal waters; ecosystem 
health assessment in typical bays; and changes in the scope 
of raft culture. The findings reveal: a downward trend in the 
abundance of floating debris in China's coastal waters from 
2015 onward and a continuous trend of improvement in 
microplastic pollution between 2016 and 2019; a generally 
stable and sound state of health in the ecosystems of Jiaozhou 
Bay, Sishili Bay and Daya Bay from 2015 onward; and an 
increase in the areas of raft culture in marine waters and 
basically stable areas of offshore ecological conservation in 
Jiangsu and Fujian provinces between 2017 and 2020.

With regard to SDG 15 (Life on Land), this 
report focuses on three themes, i.e. forests, 
land degradation and biodiversity, against 
four SDG indicators, i.e. 15.1.1 (forest 
area as a proportion of total land area), 

15.1.2 (biodiversity conservation), 15.3.1 (proportion of land 
that is degraded over total land area) and 15.5.1 (Red List 
Index), and presents Big Earth Data-enabled SDG indicator 
evaluation models and methodologies, as well as pilot 
applications at three levels, namely, global, national (China), 
and local (typical areas). The findings and deliverables are as 
follows: a global forest cover map at 30 m spatial resolution 
for 2019 and a spatial dataset on the state and scope of 
threats to, and cumulative stress on, China's protected 
flora and fauna; an integrated spatial-temporal-spectral 
feature extraction model for forests and a spatial abundance 
simulation methodology for threatened species; critical 
conclusions that China's Land Degradation Neutrality (LDN) 
was on a trajectory of continuous improvement between 
2015 and 2018 (contributing close to 1/5 of global LDN) and 
that marked improvements in soil loss on the Loess Plateau 
and the aeolian desertification and sandification in northern 
China have been observed since 2000; the introduction of 
the three global conditions for category-specific conservation 
and sustainable use of biodiversity into China; and 
recommendations on the strategies and solutions needed for 
ecosystem conservation and restoration in the context of 
the National Projects for the Conservation and Restoration 
of Major Ecosystems, thus lending effective support for 
dynamically monitoring and evaluating SDG 15 .
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Big Earth Data in Support of the Sustainable Development Goals (2020)

The Global Indicator Framework for the Sustainable 
Development Goals and targets was adopted in 2017 by the 
United Nations (UN) as a preliminary system for Member 
States to adopt, on a voluntary basis, for monitoring progress 
in SDGs implementation. The Framework, subject to regular 
refinement and updating, faces the following problems.

1) Lack of data. The situation where there were neither 
evaluation method nor data has improved for all indicators 
in the past five years. However, for 46% of indicators, there 
are methods but no data; for those where both are available, 
the results are measured largely in a statistical way without 
the support of spatial distribution information. Spatial 
data that are objective, accurate and at varying scales are 
necessary for the achievement of SDGs. Specifically, data 
collected scientifically can be used to assess changes in the 
natural environment regularly and quantitatively, accurately 
identify the spatial position of disasters, and predict their 
future trends, in such cases as extreme high temperatures 
and heatwaves, higher frequency of fires, ocean acidification, 
increased eutrophication, continued land degradation, 
reduced biodiversity, and increased environmental impact on 
agricultural production.

2) Imbalance in capacities. Developing countries are 
constrained, by the level of their economic growth and 
carrying capacity of resources and environment, in 
their abilities to collect and analyze data, regularly and 
quantitatively. The lack of data has rendered invisible such 
serious issues as high ratio of stunting, inadequacy of urban 
housing and public space, weak disaster resilience, lack 
of access to safe drinking water, and overuse of forests. 
With Big Earth Data, we can collect objective data at 
global, regional and other scales, in a timely, accurate and 
comprehensive way, and improve their compatibility and 
comparability, so that "no one is left behind" on data essential 
to SDGs achievement.

3) Intertwined, but mutually restrictive indicators. SDG 
indicators are wide-ranging, long-term and intertwined. 
These diverse, complex indicators at multiple tiers come 
together to form a coherent, feasible whole. How to create 
methods and models for objective and effective monitoring 
and evaluation, based on compatible, quantifiable data, is an 
urgent issue for which a solution must be found.

The United Nations Sustainable Development Summit 
adopted in 2015 the 2030 Agenda, which proposed 17 
Sustainable Development Goals (SDGs) covering the 
economic, social and environmental aspects. These goals 
represent the direction of national development and 
international cooperation. In the almost five years since 
their adoption, the monitoring and evaluation of SDGs 
implementation have been constrained by the lack of data, 
varying capacities and the indicators being both intertwined 
and mutually restrictive. Scientific and technological  

innovation are solution to this pressing issue. The CAS 
Big Earth Data Science Engineering Program (CASEarth) 
has released annually scientific evidence-based monitoring 
results of six SDGs—SDG 2 (Zero Hunger), SDG 6 (Clean 
Water and Sanitation), SDG 11 (Sustainable Cities and 
Communities), SDG 13 (Climate Action), SDG 14 (Life 
below Water) and SDG 15 (Life on Land)—by drawing 
on Big Earth Data's strengths in multi-scale and near real-
time processing and system integration. This is a concrete 
contribution to SDGs implementation.

Introduction

The United Nations launched the Technology Facilitation 
Mechanism (TFM) to address the above-mentioned 
issues and challenges through Science, Technology 

and Innovation (STI) by pooling the collective wisdom 
of the scientific community, business community, and 
stakeholders.

Challenges to SDGs Implementation

Big Earth Data
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The CASEarth Big Earth Data system can support the 
implementation of SDGs by converting Big Earth Data to 
relevant information, providing policy-making support, 
constructing and integrating an index system, and studying 
the relationships and couplings between various SDG 
targets from the perspective of the Earth system. It can also 
support the monitoring and evaluation of SDG indicators 
through data-sharing platforms and cloud infrastructure by 
providing data, online calculations, and visual presentations. 
Currently, CASEarth shares a total of 8 PB of data, 3 PB 
of which is updated annually. It can provide 1 PF of high-
performance computing and big data processing in the cloud. 
The Big Earth Data system's full capabilities, from data-
to-information visualization to numerical simulation, can 
support the dynamic monitoring of and macro-level policy-
making for SDGs.

CASEarth studies SDGs from the following four aspects:

1) Construct a Big Earth Data infrastructure for SDGs to 
provide data products to close the gap of missing data and 
realize data sharing.

2) Create methodologies and a technical system for achieving 
SDGs.

3) Provide data for monitoring SDG indicators from Earth 
science satellites. 

4) Issue annual reports on Big Earth Data in Support of 
SDGs to showcase the latest progress.

This year's report presents 26 typical cases concerning six 
SDGs and discusses methods and pathways by which Big 
Earth Data can be used for efficient and accurate assessment 
of the implementation of SDGs, and as timely, scientific 
evidence to support policy-making.

Big Earth Data is big data in the field of Earth science 
with spatial attributes, especially the massive Earth 
observation data generated by space technology (Guo et 
al., 2016). Such data is mainly produced at a large spatial 
scale by scientific devices, detection equipment, sensors, 
socio-economic observations, and computer simulation 
processes. Similar to other types of big data, Big Earth Data 
is massive, multi-sourced, heterogeneous, multi-temporal, 
multi-scaled, and non-stationary. But more than just that, 
it has strong spatiotemporal and physical correlations, and 
the data generation methods and sources are controllable. 
Big Earth Data science is interdisciplinary, encompassing 
natural sciences, social sciences, and engineering. It 
systematically studies the correlation and coupling of the 
Earth system based on data analysis. Earth is observed 
and studied as a whole by simultaneously employing big 

data, artificial intelligence, and cloud computing, so as 
to understand the complex interactions and development 
processes between Earth's natural system and the human 
social system. Big Earth Data can make an important 
contribution to the realization of SDGs.

CAS launched the Big Earth Data Science Engineering 
Program (CASEarth) in 2018, an endeavor to accelerate 
the transformation from Earth data systems and sharing to 
Digital Earth. It promotes the sharing of data, knowledge, 
and experience across the world, and supports scientific 
discovery, technological innovation, and policy-making. 
Big Earth Data science is a solution to cross-sectoral, 
multidisciplinary collaboration (Guo et al., 2020a). It 
is an innovation under the TFM that can support the 
achievement of SDGs.

Big Earth Data in Support of SDGs
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SDG 2 aims at ending hunger, achieving food security, 
addressing nutritional needs, and promoting sustainable 
agriculture. It serves as a foundation for the achievement of 
SDGs around the world. Global food production has more 
than doubled compared with that in the mid-20th century 
(FAO, 2020). Undernourished people as a share of the world's 
population dropped from 36% in 1969 to 11% in 2018 (United 
Nations, 2019). The number of hungry people, however, has 
increased slightly for a few years running (FAO, 2019). At the 
same time, food production has had a considerably negative 
impact on the world's ecosystems and environment (West et al.,  
2014). The global food systems must change.

China has consistently pursued a policy of protecting arable 
land. Thanks to agro-technology and innovation, food production 

has doubled in the past 30 years. China produces enough grain 
to meet over 95% of its domestic demand. There are, however, 
also issues to be addressed, such as sharply rising demand for 
food and the impact of food production on ecosystems and the 
environment (Zuo et al.,  2018).

Based on the macroscale dynamic monitoring that Big Earth 
Data enables, this report focuses on the rate of under-five 
stunting and proportion of agricultural area under productive and 
sustainable agriculture, indicators highly relevant to the supply 
and demand sides of food security, and presents new evaluation 
method and data product for progress monitoring. It showcases 
the potential of Big Earth Data in SDG 2 evaluation and the 
progress China has made toward zero hunger.

Background
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Focusing on the two indicators, addressing nutritional needs and 
securing food production, the report proposes a remote sensing-
based model for estimating yield potential. The following 
cases present three data products developed for indicator 

evaluation and technical support in three aspects to policy-
making on maintaining balance in the supply and demand of 
food (Table 2-1).

Table 2-1 Cases and Their Main Contributions

Indicator Tier Case Contributions

2.2.1 Prevalence of 
stunting (height for age 
<-2 standard deviation 
from the median of 
the World Health 
Organization (WHO) 
Child Growth Standards) 
among children under 5 
years of age

Tier I The trend of under-five 
stunting in China

Data product: dataset on change in prevalence of stunting 
among children under 5 years of age in China
Support to policy-making: presenting variations in regional 
trends and identifying priority areas

2.4.1 Proportion of 
agricultural area under 
productive and sustainable
agriculture

Tier II

Potential for sustainable 
cropland intensification 
in China

Data product: spatial dataset of the multiple cropping index 
and its potential 
Support to policy-making: proposing a pathway to 
sustainable cropland intensification

Potential for improvement
of the sustainability of 
crop production in China

Data product: spatial dataset of yield gap and reducible 
fertilizer of three major staple food crops
Method: a remote sensing-based model for yield potential 
estimates
Support to policy-making: informing policy on potential 
yield increase and fertilizer reduction

Main Contributions
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The trend of under-five stunting in China

2.2 By 2030, end all forms of malnutrition, including achieving, by 2025, the internationally agreed targets on stunting 
and wasting in children under 5 years of age, and address the nutritional needs of adolescent girls, pregnant and lactating 
women and older persons.

Childhood stunting is one of the most important indicators for 
long-term malnutrition that accounts for nearly 45% of child 
deaths globally (Black et al.,  2013). Improving the nutritional 
status of children has been recognised as a key component of 
"Healthy China", a strategic plan for national health in China. 

According to the World Health Organization (WHO) Child 
Growth Standards, this case monitored the spatial pattern and 
dynamic changes of the under-five stunting rate in China from 
2002 to 2017 and provided a more precise and evidence-based 
nutrition intervention strategy for children.

The stunting rate was divided into five grades: <2.5% (very 
low), 2.5%-9.9% (low), 10.0%-19.9% (medium), 20.0%-29.9% 
(high), and ≥30.0% (very high) to track the trend of under-five 
stunting in China, with the definition of stunting as length/height 
for age <-2 standard deviations from the median of the WHO 
Child Growth Standards. Meanwhile, the results were presented 

by province, urban/rural area, gender (boys/girls), and age group 
(0-, 1-, 2-, 3-, and 4- years old), and compared with the SDG 
2.2 target. Data analysis in different survey years employed 
data from the sixth census in 2010, with calculation of rates 
complexly weighted for sampling.

◎ Survey data, including data from the Chinese National 
Nutrition and Health Survey and China Chronic Diseases and 
Nutrition Surveillance.

◎ Statistical data, including data from the China Statistical 
Yearbook and Health Statistical Yearbook.

China has substantially reduced the prevalence of stunting in children under 5 years of age from 
18.8% in 2002 to 4.8% in 2017, which has met the SDG target 2.2 (under 5.9%).

During the monitoring period, the prevalence of stunting among Chinese children under 5 years 
old decreased from 7.8% to 3.4% in urban areas and decreased from 25.6% to 5.8% in rural 
areas. The gap between urban and rural areas is narrowing year by year, with a significant 
decline observed in rural areas.

Highlights

Background

Data used

Method

The prevalence of under-five stunting in China decreased from 
18.8% in 2002 to 4.8% in 2017, which achieved the SDG 2.2 
target (5.9%). At the provincial level, only 9 provinces were 

identified to have a stunting rate of "low" or "very low" in 2002 
(Fig. 2-1); by 2017, all 31 provinces were observed with a 
prevalence of "low" or "very low". 

Results and analysis

Case Study

Target: 



19

SDG 2
 

SDG 2 Zero Hunger

Figure 2-1. Under-five stunting in 2002 (a) and 2017 (b) by province in China

Figure 2-2. Trends of under-five stunting from 2002 to 2017 by urban-rural (a), gender (b), and age group (c) in China
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The improvement of children's nutritional status is not only a 
key focus of "Zero Hunger", but also an important component 
for promoting and implementing the "Healthy China" strategy. 
At present, the global food supply system and the progress 
of improving children's nutritional status have been severely 
affected by the increasing instability of international politics 
and global economy, and frequent major disasters such as 
locust plagues, as well as the global pandemic of COVID-19. 

With rapid urbanization, the large-scale population flow from 
rural to urban areas has also brought uncertainty to children's 
nutritional status. Paying close attention to international political 
and economic impacts on the global food supply chain and 
focusing on children in poor rural areas and migrant children in 
urban areas are important approaches to ensuring a continuous 
reduction in the stunting rate among children in China.

Outlook

With the continuous implementation of national children's 
nutrition improvement policies and programs for children under 
5 years old in rural and impoverished areas, the nutritional 
status of children has significantly improved, while urban-
rural disparities were also dramatically reduced. During the 
monitoring period, a significant decline in the under-five stunting 
rate was observed in all population subgroups, including urban, 

rural, gender, and age groups (Fig. 2-2). From 2002 to 2017, the 
ratio of the stunting rate of Chinese children under 5 years old 
between urban and rural areas decreased from 1:3.3 to 1:1.7, 
which achieved the SDG 2.2 target. Nevertheless, the disparities 
among genders and age groups still exist. The stunting rate is 
slightly higher in boys than girls, and higher in 1-year-old and 
2-year-old groups than other age groups.
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China is able to increase its grain harvest area by about 1.35×105 to 3.63×105 km2 on existing 
cropland by increasing multiple cropping index. Under the most realistic scenario, grain 
production is expected to be increased by 19.6% . 

Cropland intensification is largely affected by water constraints: different scenarios affecting 
the variation of harvest area have given estimations up to 60%. Efficient allocation of resources 
is of utmost importance to cropland intensification.

Highlights

Potential for sustainable cropland intensification in China

Cropland intensification has great implications for global food 
security. Although global crop production has been doubled in 
recent decades by adopting high-yield varieties, yield stagnation 
has been observed recently in many places around the world, 
implying that crop yield is close to its potential limit and is 
difficult to further increase under the current circumstances (Ray 
et al., 2012). At the same time, it is unlikely to further expand 
cropland area as it is approaching the "planet boundary" (Henry 
et al.,  2018). Constant human incursions into natural areas for 
agriculture will come at a hefty price. Consequently, sustainable 

cropland intensification by increasing multiple cropping on 
existing cropland is an alternative to improve global food 
security. 

By using big Earth observation data, this case study presents 
an assessment of the potential for sustainable cropland 
intensification in China. It estimates the impact of increasing 
grain harvest area on existing cropland by increasing the 
adoption of multiple cropping activities. Moreover, it evaluates 
the pathways for sustainable intensification by considering water 
availability as an important environmental constraint. 

Mapping current cropland use intensity. Considering the 
constraints of climate, soil, and crop suitability, the case study 
applies a minimum cross information entropy model to allocate 
crop area, yield, and total production from statistics to spatial 
grids by 10×10 km resolution. Furthermore, it maps the 
current cropland use intensity by aggregating harvested areas 
for grain crops.

Mapping potential cropland use intensity. The case study 
calculates the potential cropland use intensity according to two 
parameters: temperature and precipitation. The accumulated 
temperatures ≥ 3 400 ℃, 4 200 ℃, 5 200 ℃, and 6 200 ℃ 
are adopted for determining the thermal potential for multiple 
cropping, and the annual precipitation ≥ 500 mm and 1 200 mm 
are adopted for determining the water potential for multiple 
cropping.

◎ Spatial Production Allocation Model global gridded 
agricultural production dataset.

◎ National Land Cover Dataset, Global synergy cropland cover 

data.

◎ Climate Research Unit gridded climate dataset.

◎ Global Agro-Ecological Zones.

Background

Data used

Method

2.4 By 2030, ensure sustainable food production systems and implement resilient agricultural practices that increase 
productivity and production, that help maintain ecosystems, that strengthen capacity for adaptation to climate change, 
extreme weather, drought, flooding and other disasters and that progressively improve land and soil quality.

Target: 
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Figure 2-3. Harvest area gap in China regarding different water allocation scenarios 

Estimating harvested area gap with consideration for water 
availability. The harvested area gap is determined by dividing 
the potential cropland use intensity by the current cropland use 
intensity. Four water allocation scenarios are set to analyse the 
impact of water constraints on cropland intensification. These 
scenarios are named Priority-based allocation (grid cells with a 

higher intensity area gap are given the priority to receive water), 
Demand-weighted allocation  (using grid level water demand 
under full intensification as weight), Equality-based allocation  
(irrigation water is equally distributed across grid cells), and 
Irrigated area-weighted allocation  (using current irrigated area as 
weight).

The current cropland area in China is approximately 1.31×106 
km2, of which approximately 1.60×106 km2 harvests grain crops 
annually. The estimated harvested area gap in China ranges from 
1.35×105 to 3.63×105 km2, which is comprehensively determined 
by climate resource potential and water allocation constraints 
(Fig. 2-3). In the most realistic scenario, the full exploitation 
of the harvested area gap can bring an extra grain production 

of approximately 1.17×108 t, which equals a 19.6% increase 
compared to the current national grain production level. 

Although the total harvested area in China has been increasing 
steadily, the estimated harvested area gap first decreased then 
subsequently increased. The initial decrease was the result of 
an increase in the actual multiple cropping activities throughout 
the country, which was larger than the increase in the potential 

Results and analysis
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Figure 2-4. Changes in harvest area gap in China and the contributions from climatic and land management factors (Note: no data 
available for Taiwan province)

multiple cropping as a result of changed climatic factors. The 
subsequent increase in the harvested area gap is the result of 
a decrease in actual multiple cropping activities (e.g., land 
management factors), in combination with a stagnant potential 

(Fig. 2-4). In some southern regions, both climatic and land 
management factors have enlarged the harvested area gap, 
indicating that these areas should be prioritized for cropland 
intensification.

With the target proposed by SDG 2.4, this case study aims to 
improve the productivity and sustainability of grain production 
systems in China. Relying on Big Earth Data, it investigates 
the potential for sustainable cropland intensification and finds 
that China has great potential to harvest more grain crops on 
its existing cropland by properly increasing multiple cropping 
activities. Making full use of this potential, on the one hand, 
increases crop production to eliminate hunger, and on the 

other hand, alleviates the environmental pressure caused 
by the expansion of cropland. However, the complexity of 
cropland intensification should be fully acknowledged in that 
it encompasses resource systems, environmental systems, and 
ecological systems. Resource-saving and environmentally 
friendly global agricultural production needs to be established 
for targeting SDG 2.4.

Outlook
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A remote sensing-based model was developed to estimate the yield gap (difference between 
potential and actual yield) of three major staple food crops. It was found that the yield gap of 
rice and wheat in the agriculture zone with the highest harvest area was 13.3% and 12.5% of 
the yield in 2015, respectively. Closing the yield gap in the zone can help meet China's forecasted 
demand for rice and wheat in 2030.

Without loss of food production, the nitrogen and phosphorus fertilizers for the three major staple 
food crops in China could be reduced by 17% to 19% of the total application. Rational spatial 
distribution planning for different regions for increasing crop production while reducing excess 
fertilizer application is critical for effectively improving the sustainability of food production.

Highlights

Potential for improvement 
of the sustainability of crop production in China

Prompting food production to meet ever increasing human 
demand while limiting environmental impacts is critical for 
realizing food security, which is the major concern of SDG 2.4. 
This case focuses on three indicators referring to sustainable 
intensification (i.e., land productivity, fertilizer pollution risk, 

and food security), developing models to estimate the yield 
gap, reducible fertilizer, and self-sufficiency of three major 
staple crops (i.e., rice, wheat, and maize) in China. We aim to 
evaluate the potential for improvement of sustainability of crop 
production in China.

To quantify the yield potential of crops, a Remote Sensing-Crop 
Yield Model (RS-CYM) (Wang et al.,  2020) was developed to 
estimate the on-farm yield of the three major grain crops in 2015 
over several major agriculture zones in China. Meteorological 
and environmental factors were then used to divide each 
agriculture zone into multiple Potential Yield Zones (PYZs), and 
the yield potential for each PYZ was defined as the 95% quantile 

of the predicted pixel-level on-farm yield. The yield gap, i.e., the 
difference between the yield potential and averaged actual yield 
during the study period, was therefore obtained.

To reduce fertilizer application, input-response models for each 
crop in different climate zones were developed based on the 
yield and corresponding nitrogen/phosphate application rate. 
The types of fertilizer that limited crop yield were determined by 

◎ China's Agricultural Outlook—forecasted national demand 
for major crops in 2030.

◎ Remote sensing reflectance, vegetation index, meteorological 
data, soil data, phenology data, and yield data in major 

agriculture zones of three major staple food crops from 2010 to 
2015.

◎ Dataset on food production, fertilizer application, and water 
consumption for three major staple food crops in China in 2015.

Background

Data used

Method

2.4 By 2030, ensure sustainable food production systems and implement resilient agricultural practices that increase 
productivity and production, that help maintain ecosystems, that strengthen capacity for adaptation to climate change, 
extreme weather, drought, flooding and other disasters and that progressively improve land and soil quality.

Target: 
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Figure 2-5. Spatial distribution of yield gap for rice in the NECP (a), rice in the MLYRP (b), maize in the NECP (c), maize in 
the NCP (d), and winter wheat in the NCP (e) in China

employing the "law of the minimum" (Mueller et al.,  2012). The 
demand for the types of fertilizer other than the limiting one was 
calculated by an input-response model. As such, the reducible 

amount of fertilizer was acquired.

The level of food security was determined by the degree of self-
sufficiency, the ratio of total production to total consumption.

Results show that the yield gap of rice in the Middle-lower 
Yangtze River Plain (MLYRP), the zone with the largest harvest 
area of rice in China, was 1.1 t/hm2 in 2015, accounting for 
13.3% of the rice yield potential. Closing the yield gap of rice in 
the MLYRP could increase the national rice production by 5%, 
and help to meet the predicted total rice consumption in China in 
2030, thus achieving country-level self-sufficiency.

The yield gap of wheat in the North China Plain (NCP), which is 

the zone with the largest harvest area of wheat in China, was 0.9 
t/hm2 in 2015, accounting for 12.5% of the wheat yield potential. 
Such an improvement in yield could increase the wheat 
production of China by about 8% of the total wheat production 
in 2015. The potential production over NCP, added with the on-
farm production of other regions over China, can fully meet 
the predicted demand for wheat of the country by 2030, thus 
achieving country-level self-sufficiency.

Results and analysis
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The reducible ratio for nitrogen and phosphorus applied for 
the three major staple food crops in China was between 17% 
and 19% in 2015, with rice having the highest reducible rate. 
The areas with high reducible nitrogen are located in the east 
and southwest of the NCP, while the areas with high reducible 
phosphorus are located in the NECP and western NCP (Fig. 2-6). 
Among the three crops, maize has the highest proportion of both 
reducible nitrogen and reducible phosphorus, accounting for 48% 
and 61% of the total reducible amount, respectively; wheat has 
the lowest proportion of reducible nitrogen, accounting for 19%; 
and rice has the lowest reducible phosphorus at 14%. Removing 
excess chemical fertilizer is essential to improve soil health 
and alleviate agricultural non-point source pollution. Rational 
planning for different regions for increasing crop production or 
reducing excess fertilizer application is important for improving 
food production while reducing environmental impacts, thus 
helping to achieve sustainable intensification in China.

Figure 2-6. Spatial distribution of reducible nitrogen (a) and 
phosphorus (b) applications for the three major staple food 
crops and the proportion for different crops (c) (Note: no data 
available for Taiwan province)

NANHAI
ZHUDAO

The yield gap of maize in the two major agriculture zones, 
namely, the Northeast Plain (NECP) and NCP, are 1.5 t/hm2 

and 1.3 t/hm2, accounting for 16.0% and 19.0% of their maize 
yield potential, respectively. The improvement in production by 
closing the yield gap in the NECP was about 6% of the national 
maize production in 2015, while that in the NCP was about 

5%. The potential production of maize in the two zones, added 
with the on-farm production over other regions, can meet 89% 
of the predicted demand of maize in China by 2030. Therefore, 
achieving self-sufficiency of maize in China in 2030 requires 
improvement in the yield across additional regions.

The estimates of yield potential and reducible chemical fertilizer 
were acquired from two separate models in this case, which 
highlights difficulties in finding a pathway to increase crop 
production while removing excess fertilizer simultaneously. We 
will develop a new model that can couple these two factors in 
the future to provide useful information for regional optimization 
and finally deliver a sustainable cropping system to achieve food 
and ecological security.

Improving the sustainability of crop production faces systemic 

problems, for which the issues of the reduction of pesticide 
application and recycling of crop straw, agricultural film, 
and livestock excrement should be involved. Meanwhile, the 
achievement of sustainable intensification at the global scale 
remains uncertain due to climate change. In the future, more 
factors, including climate change, should be considered in 
analyses with regard to helping decision makers formulate 
systematic policies and regulations for a more sustainable 
cropping system. 

Outlook
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Summary

Food systems, adequate to meet the growing need for nutrition 
by human beings but not at the cost of the supply of any non-
agricultural commodities, are fundamental to global sustainable 
development. 

China gives top priority to food security and seeks to boost it 
through science, technology and innovation. Big Earth Data 
encompasses data and technologies of multiple disciplines, 
and can enable macro-level, dynamic monitoring. It can be an 
effective technical tool for evaluating Goal Zero Hunger from 
social, economic and environmental perspectives.

Focusing on SDG 2.2.1 and 2.4.1, two indicators reflecting the 
demand and supply of food respectively, the cases in this section 
fused data from multiple sources and technologies from different 
disciplines and developed a remote sensing-based model for 
yield potential estimates. Through data production and indicator 
evaluation, they presented the progress China has made in 
improving the nutritional level of its citizens. Pathways were 
proposed to achieve sustainable cropland intensification and 
crop production. Given its great potential, Big Earth Data can 
offer reliable technical means for the monitoring and evaluation 
of SDG 2 indicators.
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Water sustains life and spurs social and economic development. 
However, water scarcity, pollution, and degradation are 
challenges we all face in achieving sustainable development. 
Now, 840 million people in the world still lack access to safe 
drinking water; over 40% of the population faces water scarcity; 
and even in middle-to-high income countries, 20% of waste 
water is discharged without being treated first (UN-Water, 2018).   

To address these challenges, the United Nations proposed SDG 6, 
i.e. to ensure availability and sustainable management of water 
and sanitation for all. It includes 8 targets and 11 indicators, 
ranging from water resources, water environment, and water-
related ecosystems to international cooperation. However, 
given the different levels of social and economic development, 
varying strengths in monitoring water resources and inconsistent 
assessment criteria, hard work has to be done before SDG 6 can 
be monitored and evaluated globally.

China is a typical example of a country suffering from water 
scarcity. Its fast economic growth has also exerted huge pressure 

on water-related environment and ecosystems. Thanks to the 
Strictest Management of Water Resources  and the Action 
Plan for Prevention and Control of Water Pollution , among 
a host of measures adopted by the Chinese Government in 
recent years, there have been marked improvements in water 
efficiency and ecosystems. A mode of sustainable management 
of water resources suited for China is taking shape, supported 
by monitoring and evaluation made possible by Big Earth Data 
through remote sensing and ground observations.

This report focuses on three aspects: water resources, water 
environment and water-related ecosystems, and in particular, it 
zooms in on three indicators: bodies of water with good ambient 
water quality (SDG 6.3.2), level of water stress (SDG 6.4.2), and 
water-related ecosystems (SDG 6.6.1). It records the monitoring 
and evaluation of SDGs done in important wetlands both in and 
outside of China and the Chinese experience of trying to achieve 
SDG 6, in an effort to offer modeling, data, and scientific 
evidence for policy making.

Background
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Table 3-1 Cases and Their Main Contributions

Indicator Tier Case Contributions

6.3.2 Proportion of bodies 
of water with good ambient
water quality

Tier II
Spatiotemporal patterns 
of water transparency in 
China's lakes

Data product: time series datasets of water transparency in 
China's lakes (2000-2019)
Method: a new lake water transparency monitoring and 
evaluation algorithm based on dual-band reflectance
Support to policy-making: informing policies on water 
environmental monitoring and management in China and the 
rest of the world

6.4.2 Level of water stress:
freshwater withdrawal as 
a proportion of available 
freshwater resources

Tier I

Evaluation of level of 
water stress in the Shule 
River basin in arid 
region, Northwest China

Method: a new evaluation method of the LWS with coupling 
glacier module
Support to policy-making: providing reference for optimal 
distribution of water resources in GGCAAs

6.6.1 Change in the extent 
of water-related 
ecosystems over time

Tier I
Spatiotemporal 
distribution of China's 
vegetated wetlands

Data product: datasets of China's vegetated wetlands (2015), 
mangrove forests and Spartina alterniflora in China (2015 and 
2018)
Method: an HOHC method to map vegetated wetlands, 
mangrove forests and Spartina alterniflora
Support to policy-making: informing policy on China's 
implementation of the Ramsar Convention on Wetlands

Tier I
Dynamic change of 
water body in Ramsar 
Sites

Data product: datasets on 86 Ramsar Sites water body 
distribution in Asia, Europe, and Africa (2000-2018)
Support to policy-making: informing policy on protection 
and management of Ramsar Sites

An algorithm was created to measure water body transparency 
under SDG 6.3.2, which can be a demonstration, in terms of both 
methodology and practice, of monitoring water bodies' ambient 
quality worldwide. Regarding SDG 6.4.2, a new evaluation 
method was created to assess the level of water stress, useful 

for water distribution in the global glacier-covered arid areas. 
Regarding SDG 6.6.1, essential data were shared in support of 
China's implementation of the Ramsar Convention on Wetlands 
and global conservation actions (Table 3-1). 

Main Contributions
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This case developed a novel remote sensing algorithm of SDD 
applicable to the land reflectance of MODIS (MOD09GA):

where R 555 and R 645 denote reflectance at two bands of MODIS 
with central wavelengths of 555 nm and 645 nm respectively; 
R  is an intermediate variable. By applying the algorithm to 
reflectance during 2000-2019, the daily SDD was remotely 

retrieved. Then, the annual and climatological mean SDD values 
for different lakes were further calculated through the arithmetic 
mean method. For the in situ  SDD of China's lakes (N = 2236), 
75% of the synchronous cloudless match-ups were selected 
randomly for algorithm calibration, and the remaining 25% 
were used for validation. The results of the new algorithm were 
comparable to those of reported regional algorithms, indicating 
the wide applicability of the new algorithm at regional and 
national scales.

Spatiotemporal patterns of water transparency in China's lakes

During 2000-2019, the water transparency of China's lakes showed a spatial pattern of "high in 
the west and low in the east". Overall, water clarity was good and showed a positive trend. The 
proportion of Types I, II, and III water bodies with good clarity increased from 84.11% in 2000 
to 92.46% in 2019.

Highlights

Case Study

Water transparency (Secchi Disk Depth, SDD) refers to the depth 
at which a black/white Secchi disk becomes invisible when it 
sinks vertically into the water and can be used to describe water 
clarity. In general, the higher the transparency is, the clearer 
the water. Many studies have shown that satellite-derived 
water transparency has close relationships with water quality 

indicators (Chang et al., 2020; Lee and Lee, 2015). To reveal 
the water clarity in China's lakes at a macro level, this study 
developed a novel remote sensing algorithm to retrieve the water 
transparency of large lakes in China (>20 km2) during 2000-
2019, as a useful exploration for the monitoring and evaluation 
of SDG 6.3.2.

◎ Land reflectance, land surface temperature, and Normalized 
Difference Vegetation Index (NDVI) of Moderate Resolution 
Imaging Spectroradiometer (MODIS) during 2000-2019.

◎ Precipitation data of the Tropical Rainfall Measuring Mission 

(TRMM) during 2000-2019.

◎ China's Digital Elevation Model (DEM).

◎ Reanalysis products of wind speed during 2000-2019.

◎ Chinese population density per square kilometer in 2010.

Background

Data used

Method

6.3 By 2030, improve water quality by reducing pollution, eliminating dumping and minimizing release of hazardous 
chemicals and materials, halving the proportion of untreated wastewater and substantially increasing recycling and safe 
reuse globally.

Target: 
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1) Spatiotemporal patterns of SDD in 
China's lakes

Overall, the SDD of China's lakes showed 
a geographical pattern of "high in the west 
and low in the east." The mean SDD of 
lakes in the three western mountainous 
lake zones (180.28 ± 171.29 cm) was more 
than twice that of the two eastern plain lake 
zones (78.01 ± 40.54 cm) (Fig. 3-1a). The 
mean SDD values in the Yunnan-Guizhou 
Plateau Lake (YGPL), Tibetan Plateau 
Lake (TPL), Inner Mongolia-Xinjiang 
Lake (IMXL), Eastern Plain Lake (EPL), 
and Northeast Plain and Mountain Lake 
(NPML) zones were 404.63 ± 363.98 cm, 
182.41 ± 184.29 cm, 139.70 ± 193.96 cm, 
92.90 ± 90.09 cm, and 55.05 ± 33.46 cm, 
respectively (Fig. 3-1). The results showed 
that the spatial changes in lake SDD were 
mainly influenced by water depth, which 
explained 88.81% of the spatial variations. 
In situ  showed that water eutrophication 
also reduced SDD and there  was a 
significant negative power correlation 
between the measured chlorophyll a and 
SDD (N = 1827, r = 0.36, p < 0.001).

During 2000-2019, the water clarity of 
China's lakes improved to a certain extent. 
For the 412 studied lakes, which accounted 
for 87.02% of China's total lake areas, 
70.15% showed increases in SDD, and 
42.72% showed significant increases. 
Vegetation restoration in the catchment 
played a major role in increasing lake 
SDD. Improvement in NDVI contributed 
44.95%, 37.87%, 75.66%, 58.12% and 
36.34% of the increases in SDD in the 
IMXL, TPL, YGPL, NPML and EPL 
zones, respectively. Climate change also 
showed significant effects on increasing 
SDD, especially for lakes in the TPL zone. The rising air 
temperature led to the melting of glaciers and rising lake water 
levels, which explained 24.98% of the increase in SDD in the 
TPL zone.

2) Proportions of lakes at different water clarity levels

According to the published standard (Chang et al.,  2020; Lee 
and Lee, 2015), this case set thresholds for different water clarity 

levels: lakes with annual mean SDD values of ≤ 25, (25, 65], 
(65, 100] and > 100 (unit: cm) were classified as Types IV, III, II 
and I, respectively. Most lakes of Type I were located in western 
China, especially in the TPL zone. For lakes in the two eastern 
lake zones, most were Type III, and the degradation of water 
clarity was observed in some of these lakes. From 2000 to 2019, 
Type I lakes increased significantly from 39.12% to 54.01%; 
Type II lakes remained stable at approximately 14.21%; Type III 

Figure 3-1. The SDD values of China's large lakes during 2000-2019
(a) The mean SDD values; (b) Proportions of lakes with different water clarity levels
The change rate in NDVI was the linear fitting slope during 2000-2019. IMXL: Inner 
Mongolia-Xinjiang Lake; TPL: Tibetan Plateau Lake; YGPL: Yunnan-Guizhou Plateau Lake; 
NPML: Northeast Plain and Mountain Lake; EPL: Eastern Plain Lake

Results and analysis
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lakes decreased significantly from 32.52% to 23.84%; and Type 
IV lakes also decreased significantly from 15.89% to 7.54%. 
The combined proportion of lakes with good water clarity (Type 
I, II or III) increased from 84.11% in 2000 to 92.46% in 2019 

(Fig. 3-1), representing an increase of 8.35 percentage points. In 
general, China's large lakes exhibit good water clarity and are 
still improving.

This case developed a remote sensing algorithm to rapidly 
map SDD in China's lakes and quantitatively calculated the 
contributions of different impact factors to the spatiotemporal 
variations in SDD. Vegetation restoration in the catchment had 
positive effects on increasing lake SDD during 2000-2019. 
Overall, the water clarity of large lakes in China is fairly good 

and still improving, with the proportions of lakes in Types I, 
II or III up from 84.11% in 2000 to 92.46% in 2019. Based 
on correlation analyses, this case proposed three measures 
to improve water clarity of China's lakes: ecological water 
replenishment, eutrophication control, and vegetation restoration 
in the catchment.

Outlook
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The average glacier meltwater contribution to the total runoff of the Shule River basin will 
decrease from the current 23% to 15% by 2030s (RCP 2.6 scenario).

From 2015 to 2020, supply of fresh water resources has been close to the level of demand. 
Between 2021 and 2030, the level of water stress will increase.

Highlights

Figure 3-2. Spatial distribution of glaciers, runoffs, and oases in the Shule River basin

Evaluation of level of water stress 
in the Shule River basin in arid region, Northwest China

As a solid body of water, glaciers play an extremely important 
role in the sustainable water use in the global arid area. The 
population of the arid areas highly dependent on glacial water 
resources is nearly 200 million. Against the background of 
global warming, mountain glaciers across the world have 
been melting at a faster pace, resulting in weaker capacity for 
continuous water supply to some arid areas, triggering a chain 
effect on the downstream ecological-social-economic systems, 

such as shortage of water for economic and social purposes, and 
increase in potential risks of desertification (Allan et al.,  2019; 
Immerzeel et al.,  2019).

LWS is the most direct indicator of water resource stress. 
Currently, however, a module is lacking for glacial runoff 
LWS, the correct assessment of which is a key to the accurate 
assessment of the LWS in the Global Glacier-Covered Arid 
Areas (GGCAAs).

Background

6.4 By 2030, substantially increase water-use efficiency across all sectors and ensure sustainable withdrawals and supply 
of freshwater to address water scarcity and substantially reduce the number of people suffering from water scarcity.

Target: 



36

SDG 6
 

Big Earth Data in Support of the Sustainable Development Goals (2020)

The case analyzed the impact of glacial runoff changes on the 
LWS in the basin under Representative Concentration Pathway 
(RCP) 2.6 (a sustainable development scenario) and developed 
a new evaluation method of the LWS with coupling glacier 
module. The method (as shown below) can be used for the LWS 
calculation in the GGCAAs. 

where the LWS  is the level of water stress; S  is the available 
fresh water resources; Dse is the social and economic water 
demand, including water needed for production (Dp), domestic 
consumption (Dd), and artificial ecosystems (Dae) (calculated 

by the water quota method); Rtotal is the watershed runoff; Dne 
is ecological baseflow (calculated by the hydrological index 
method, i.e. the ordinal "90%" observation year out of a list of 
the average flow of the driest month of each year in descending 
order). In arid basins, glacial runoff, accounting for a high 
proportion of the total in dry seasons, is of great significance 
for maintaining the ecological baseflow of rivers. The Nash 
efficiency coefficient and R2 index were selected to evaluate the 
simulations of upstream runoff in the basin from 1991 to 2013. 
The results showed fairly good simulation effects, with the 
Nash efficiency coefficient being 0.89 and R2 0.89 (Zhang et al.,  
2019).

The Shule River basin, located in the arid region of northwest 
China (it straddles Haibei Tibetan Autonomous Prefecture, 
Qinghai province and Jiuquan city, Gansu province), is a typical 
example of the GGCAAs (Fig. 3-2). The case calculated and 

simulated the total runoff, glacial runoff from the upper reaches 
of the Shule River basin, and basin socio-economic water 
demand, evaluated the basin's LWS from 2000 to 2030, and put 
forward policy recommendations on water resources security.

◎ The First and Second Chinese Glacier Inventory (1970-2004; 
2006-2011) .

◎ Runoff data of Changmabao hydrological station from 
mountainous watershed in the Shule River basin.

◎ Basin Statistical Yearbook, Social and Economic Bulletin 
and water demand indicators of basin primary, secondary, and 
tertiary industries during 2000-2018.

Data used

Method

In the context of global warming, the increases in precipitation 
and glacial meltwater in the upper reach of the Shule River basin 
lead to an upward trend of the total upstream surface runoff. 
During the period 2000-2010, the average annual runoff was 
about 1.04×109 m3, of which the average annual glacial runoff 
was about 2.64×108 m3. Forecasts indicate that, compared with 
2000-2010, the average runoff will increase by 22.8%, while the 
average glacial runoff will decrease by 11% from 2020 to 2030. 
The contribution of glacial meltwater to the SLR will be reduced 
from 23% at present to 15% by 2030s (RCP 2.6 scenario).

During the period 2000-2010, the average annual ecological 
baseflow in the Shule River basin was 4.20×108 m3, accounting 
for 40.6% of the average annual surface runoff. During the period 
from 2020 to 2030, it will decrease to 3.84×108 m3, accounting 
for 30.2% of the annual average surface runoff. Affected by the 

reduction of glacial runoff, the ecological baseflow in the Shule 
River basin has shown a downward trend. The annual available 
freshwater resources increased generally between 2000-2010, 
totaling 6.16×108 m3, and will increase by 44.2% to 8.88×108 m3 
between 2020-2030 due to increase in precipitation.

From 2000 to 2004, the basin freshwater withdrawal was about 
5×108 m3. It increased rapidly to 9.89×108 m3 from 2005 to 2014, 
due to resettlement and expansion of arable land, with the LWS 
hovering around 1.45. From 2015 to 2020, under the restriction 
of water use quota, there has been a basic equilibrium between 
supply and demand for water resources in the basin. If the 
current trend continues, during the period 2021-2030, annual 
freshwater withdrawal will continue to increase, and the LWS 
will rise (Fig. 3-3). Glacial runoff has contributed to an average 
reduction of the LWS by 0.71 from 2000 to 2030. 

Results and analysis
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Figure 3-3. The changes of level of water stress in the Shule River basin in arid region of Northwest China 

Glacial runoff is important to the relief of water stress and 
sustainable development of eco-economic system in the 
GGCAAs. Glacial runoff has an obvious regulating effect on 
surface runoff. In the future, as the glacial meltwater runoff in 
the Shule River basin continues to decrease, its role in regulating 
and relieving water stress in the basin will be greatly weakened. 
In dry years with high temperature and low rainfall and years 
with large water withdrawals, the LWS in the basin may greatly 

increase. Higher agricultural irrigation water consumption 
and lower water use efficiency are the main factors leading to 
a certain level of water stress in the basin. In the future, strict 
control over arable land expansion, higher irrigation water use 
efficiency and developing efficient, water-saving agriculture hold 
the key to reducing freshwater withdrawal and maintaining the 
sustainable use of water resources in the GGCAAs.

Outlook
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This case study applied the Hybrid Object-based and Hierarchical 
Classification (HOHC) approach to map national vegetated 
wetlands. The work flow includes: first, select remote sensing 
data of different seasons as data sources by climatic zone and 
vegetated wetland type; second, classify wetland based on 
multi-scale segmentation and the hierarchical decision tree 

method; third, validate or correct classification results based on 
massive field survey samples (Jia et al.,  2018; Mao et al.,  2019, 
2020). Finally, datasets of China's vegetated wetlands in 2015 
and mangrove forests and Spartina alterniflora (S. alterniflora) 
in 2015 and 2018 were obtained, with an overall accuracy of 
classification for the former at 95% and for the latter over 92%.

Analysis of the spatial distribution of China's vegetated wetlands in 2015 and measurement 
of changes in mangrove forests and Spartina alterniflora  in China between 2015 and 
2018 showed that the net increase in mangrove forests was 22.11%, and the net decrease 
in invasive Spartina alterniflora  was 2.59%. In China, mangrove forests have been 
significantly restored and the invasion of Spartina alterniflora was under effective control.

Highlights

Spatiotemporal distribution of China's vegetated wetlands

Wetland is a key component of the life community comprising 
mountains, rivers, forests, fields, lakes, and grasses. Their 
protection and management is critical to the Building a 
Beautiful China Campaign. Analysis of changes in wetlands' 

spatiotemporal distribution is an important basis for assessing 
the national achievement of SDG 6.6, and will also provide key 
data to support the implementation of the Ramsar Convention on 
Wetlands.

Background

◎ Landsat-8 Operational Land Imager (OLI) images (2015 and 
2018).

◎ DEM, vector data of administrative division, 1:1 000 000 
vegetation type map, climatic zones map, global water distribution 

maps (2015 and 2018).

◎ Massive ground survey samples, governmental statistical and 
monitoring data.

Data used

Method

1) Spatial patterns of China's vegetated wetlands

Vegetated wetlands in China were estimated to be 1.64×105 km2 
in 2015, including inland vegetated wetlands (98%) and coastal 
vegetated wetlands (2%) (Fig. 3-4). China's vegetated wetlands 
were observed mainly in Tibet, Qinghai, Inner Mongolia, 
Heilongjiang, and Xinjiang. They were primarily distributed in 
areas with annual precipitation between 300 and 600 mm and 

elevation below 200 or above 3 000 m.

2) Spatiotemporal distribution and areal changes of 
mangrove forests in China

Mangrove forest is an important part of global biodiversity that 
must be protected. In recent years, China has been continuously 
strengthening the protection and restoration of mangrove forests, 
and has become one of the few countries in the world with net 

Results and analysis

6.6 By 2020, protect and restore water-related ecosystems, including mountains, forests, wetlands, rivers, aquifers 
and lakes.

Target: 
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Figure 3-4. The map of vegetated wetlands distribution in 2015

increase in mangrove forest area. In 2018, the Guangdong-
Hong Kong-Macao Greater Bay Area had the largest mangrove 
area, followed by Guangxi and Hainan. The three regions have 
95% of the country's total mangrove forest areas. From 2015 to 
2018, mangrove areas in China increased from 226.74 km2 to 
276.89 km2 with a net increase of 22.11 % (Fig. 3-5). The areal 
extent of mangrove forest increased significantly in Guangxi and 
Guangdong, increased slightly in Hainan, and decreased slightly 
in Taiwan province.

3) Spatial distribution and areal changes of S. alterniflora  in 
China

The invasive S. alterniflora  has been regarded as one of the 
main threats to ecological security along Chinese coasts. In 

2018, S. alterniflora was primarily observed in four provinces/
municipality: Jiangsu, Zhejiang, Shanghai, and Fujian. The 
largest areas invaded by S. alterniflora  were in Jiangsu, 
accounting for one third of the total invaded areas in the country. 
Such areas decreased from 547.43 km2 in 2015 to 533.24 km2 
in 2018, with a net decline of 14.19 km2 (Fig. 3-5). Due to 
human control and aquacultural expansion, among others, four 
provinces/municipalities—Zhejiang, Shanghai, Jiangsu, and 
Tianjin—saw areal declines of S. alterniflora , particularly in 
Zhejiang with the largest area decline of 15.52 km2. Despite 
overall areal decline across the country, certain regions still faced 
a severe invasive trend, for example the Yellow River Delta. No 
S. alterniflora was observed in Taiwan and Hainan provinces. 



40

SDG 6
 

Big Earth Data in Support of the Sustainable Development Goals (2020)



41

SDG 6
 

SDG 6 Clean Water and Sanitation

This case study developed an HOHC method to map 
vegetated wetlands in China and applied it to establish 
datasets of China's vegetated wetlands in 2015 and 
mangrove forests and S. alterniflora  in 2015 and 2018 
with high mapping accuracy. These datasets can provide 
an important scientific basis for evaluating SDG 6.6 at the 
national scale.

This case study finds that: (1) Since 2015, the area of 
mangrove forests in China has increased markedly, which 
means a great contribution to the global protection and 
restoration of mangrove forests; (2) From 2015 to 2018, 
the area in China invaded by S. alterniflora  showed a trend 
of net decrease, reversing the previous upward trend, 
suggesting that the actions of S. alterniflora  control in 
China had produced initial results.

Outlook
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This case study selected 86 representative inland Ramsar sites 
and their corresponding 51 basins in Asia, Europe, and Africa. 
The overall trend of changes in the water bodies and the inter-
annual trend of variation within a year was analyzed using 
the least square linear regression method, and the significance 
level of the changes was tested through double tail t-test (0.05). 
According to the time series water body datasets, the water 

bodies were further divided into three types: permanent water 
bodies, seasonal water bodies, and temporary water bodies; their 
change trends were extracted through wavelet transform and 
time series decomposition method. Seven typical Ramsar sites of 
varying degrees of change were further selected for analysis and 
assessment of water body changes.

Based on the long-term water body dataset with high time resolution, the dynamic changes 
in water areas in Ramsar Sites were analyzed. The results showed that from 2000 to 2018, 
50% of the Ramsar Sites in Asia, Europe, and Africa exhibited a trend of significant change, 
and most of them (58%) an upward trend.

Highlights

Dynamic change of water body in Ramsar Sites

The dynamic monitoring of the water bodies in the Ramsar 
Sites can directly or indirectly reflect the trend of changes and 
protection effect of the wetland ecosystem (Zheng et al.,  2012). 
At present, there are 171 Contracting Parties to the Ramsar 
Convention on Wetlands committed to wetland conservation 
and management. By May 2020, there were 2 391 wetland 
reserves on the Ramsar Sites List, covering a land area of 
2.53×106 km2.

The United Nations Water (UN-Water) has provided datasets 

related to SDG 6.6.1, including surface water, mangroves, 
reservoirs, and wetlands, based on the Global Surface Water 
Explorer (Pekel et al., 2016) and Global Lakes and Wetlands 
Database (Lehner and Doll, 2004) developed by the Joint 
Research Centre of the European Commission (JRC). However, 
there is no direct and comprehensive monitoring and evaluation 
of the ecological status of Ramsar Sites. The dynamic change 
of the water bodies in Ramsar Sites has a direct impact on the 
ecological environment of such reserves.

Background

◎ Boundaries of Ramsar Sites in Asia, Africa and Europe (2020).

◎ Global water bodies dynamic datasets from 2000 to 2018, 
Aerospace Information Research Institute, Chinese Academy of 
Sciences, with a spatial resolution of 250 meters and temporal 

resolution of 8 days (Han and Niu, 2020).

◎ Watershed boundaries data (2000), World Wide Fund for 
Nature (WWF) .

Data used

Method

In general, 50% (43/86) of the selected Ramsar Sites showed 
significant water body changes (Fig. 3-6). Among them, 25 

sites showed increase and 18 decrease. In terms of stability 
(intra-annual variation) of water bodies in Ramsar Sites, the 

Results and analysis

6.6 By 2020, protect and restore water-related ecosystems, including mountains, forests, wetlands, rivers, aquifers 
and lakes.

Target: 
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Figure 3-6. The variation trend of the water area of Ramsar Sites and their basins from 2000 to 2018
 (a) Interannual variation trend; (b) Seasonal fluctuation characteristics
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vast majority (83%) sites remained relatively stable. The water 
fluctuation level rose in less than 6% (5/68) of the Ramsar Sites, 
while the level dropped in 12% (10/86).

Different water body types (permanent, seasonal and temporary) 
of Ramsar Sites showed different change patterns. In the Boeng 
Chhmar and Lake Burdur reserves, despite increase in temporary 
water bodies, the total area of water bodies showed a downward 
trend due to the decrease in permanent water bodies.

Because of the increases in permanent water bodies (2/5) and 
temporary water bodies (3/5), there was an upward trend in 
the five Ramsar Sites—Rawa Aopa Watumohai National Park, 
Central Marshes, Vallée de la Haute-sûre, Keta Lagoon Complex 

Ramsar site, and Lake Baringo.

The changes in water bodies in the basins where the Ramsar 
Sites are located demonstrated different features from those 
within the Ramsar Sites. For six Ramsar Sites, the water bodies 
in the basins where they are located exhibited a downward trend, 
mainly due to the decreases in permanent water bodies in the 
basins and also related to the changes in seasonal water bodies 
(basins of Rawa Aopa Watumohai National Park and Keta 
Lagoon Complex Ramsar) and temporary water bodies (basins 
of Boeng Chhmar and Lake Baringo). However, the water bodies 
of the basin of Keta Lagoon Complex Ramsar Site showed a 
significant upward trend. 

The case study assessed some Ramsar Sites selected from a 
multitude of them for the significant changes in their water 
bodies. In the future, such monitoring can be extended to all 
Ramsar Sites on a global scale. To achieve SDG 6.6.1, it is 
necessary to speed up the development of global remote sensing 

mapping products of water-related natural ecosystems (Hu et al ., 
2017; Zheng et al.,  2015), and research on theories and methods 
for the monitoring and evaluation of Ramsar Sites and related 
protected areas.

Outlook

This chapter focuses on water resources, water environment and 
water-related ecosystems. Big Earth Data-enabled models and 
methods were developed for evaluating transparency of lakes 
(SDG 6.3.2), water-use efficiency (SDG 6.4.1), LWS (SDG 6.4.2) 
and water-related ecosystems (SDG 6.6.1), making it possible 
for multiple SDG 6 indicators to be monitored and evaluated in 
dynamic, spatial and quantitative ways. Data products, methods 
and how they can support policy-making on water security were 

presented.

Two tasks deserve future attention:

◎ Comprehensive evaluation of the implementation of multiple  
indicators of SDG 6 in China and the world, such as water 
resources, water environment and water-related ecosystems.

◎ Coordinated monitoring and evaluation of indicators under 
Goals 2, 6, 11, 13, and 15.

Summary
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Sustainable cities and communities hold the key to achieving all 
the 17 SDGs. At the current pace, by 2030, 60% of the world's 
population will be living in cities, and by 2050, the rate will be 
approaching 70% (United Nations, 2018). Fast urbanization has 
brought huge challenges on many fronts, such as an increasing 
number of slum dwellers due to housing shortages, traffic 
congestion, worsening air pollution and sewage, insufficient 
fresh water supply, waste disposal problems, and inadequate 
basic services and infrastructure. Unplanned urban expansion is 
particularly prone to the impact of climate change and natural 
disasters.

To address these challenges, the United Nations proposed 
SDG 11: make cities and human settlements inclusive, safe, 
resilient and sustainable, encompassing 7 technical targets and 
3 policy targets and 15 indicators. However, the availability 
of data is a problem in the monitoring and evaluation of 13 
out of the 15 indicators. SDG 11 is related to at least 11 other 
SDGs, and about one third of the 230+ SDG indicators can be 
measured in cities. The course of action for the next 20 years 
has been charted by the New Urban Agenda , adopted at the 
United Nations Conference on Housing and Sustainable Urban 

Development (Habitat III) in October 2016. Under its 13th Five-
year Plan, China will advance urbanization by giving more 
farmer-turned-migrant workers city dwellers' status, improving 
urban structure and appearance, making cities pleasant and 
livable, refining the system for housing supply and promoting 
coordinated development between urban and rural areas. As part 
of China's National Climate Change Adaptation Strategy, the 
Action Plan for Urban Adaptation to Climate Change , issued 
in February 2016, requires urban planning to be done in a 
way that improves the management of the urban environment. 
In December of the same year, the State Council issued the 
Program of Innovation Demonstration Areas for Implementation 
of the 2030 Agenda, and so far such demonstration areas have 
been built in Shenzhen, Taiyuan, Guilin, Chenzhou, Lincang and 
Chengde to showcase sustainable development.

The report presents Big Earth Data-enabled monitoring and 
evaluation of informal settlements (SDG 11.1.1), convenient 
access to public transport (SDG 11.2.1), urbanization (SDG 
11.3.1), urban disasters (SDG 11.5.1/SDG 11.5.2 ), and open 
public space (SDG 11.7.1) at national and local scales, and 
integrated SDG 11 assessment at the provincial level in China.

Background
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Table 4-1 Cases and Their Main Contributions

Indicator Tier Case Contributions

11.1.1 Proportion of 
urban population living 
in slums, informal 
settlements or inadequate 
housing

Tier I

Estimates of population 
living in shantytowns 
as a percentage of main 
urban district residents 
in cities in China

Data product: data of shantytown population ratio and vector 
boundaries in 27 cities in China (2019) 
Method: a semantic segmentation and transfer learning 
method for shantytown estimation

11.2.1 Proportion of 
population that has 
convenient access to 
public transport, by sex, 
age and persons with 
disabilities

Tier II

Proportion of the 
population with easy 
access to public 
transportation in China

Data product: datasets of population with easy access to 
public transportation, by age and gender, with 1 km resolution 
(2015 and 2018)

11.3.1 Ratio of land 
consumption rate to 
population growth rate

Tier II
Monitoring and 
assessing urbanization 
progress in China

Data product: a series of 7 datasets of built-up areas of 433 
cities in China (1990-2018)
Method: proposal of a new indicator—the ratio of economic 
growth rate to land consumption rate

11.5.1 Number of deaths, 
missing persons and 
directly affected persons 
attributed to disasters per 
100 000 population
11.5.2 Direct economic 
loss in relation to global 
GDP, damage to critical 
infrastructure and number 
of disruptions to basic 
services, attributed to 
disasters

Tier II

Monitoring of disaster 
loss reduction and 
promotion of sustainable 
development in 
vulnerable areas in 
China

Data product:  data  from monitoring indicators  of 
disaster losses between 2013-2019; data from monitoring 
reconstruction and sustainability in quake-hit Yushu
Support to policy-making: presenting evidence on large 
reduction in deaths, people affected, and direct economic 
loss as a result of disasters in China, effectively promoting 
sustainable development in disaster-prone areas

Impact assessment of 
storm surge inundation 
in Shenzhen

Data product: 4 km water depth data of Typhoon Nida in 
2016 and Typhoon Mangkhut in 2018
Support to policy-making: using digital-twin method to 
assess the impact of storm-surges of different intensities on 
population and economy

11.7.1 Average share 
of the built-up area of 
cities that is open space 
for public use for all, by 
sex, age and persons with 
disabilities

Tier II
Share of open public 
space area in cities in 
China

Data product: datasets of share of open public space area in 
cities in China (2015 and 2018)

Integrated Assessment of 
SDG 11

Tier I/
Tier II

Integrated assessment of 
SDG 11 indicators at the 
provincial scale in China

Data product: dataset of integrated assessment of multiple 
indicators of 340 Chinese prefectural-level cities
Support to policy-making: supporting sustainability 
assessment of major cities in China and serving as reference 
for integrated SDGs assessment in other Chinese regions

Cases in this report present studies on monitoring and evaluation 
of SDG 11 using Big Earth Data to facilitate policy development 
and actions for enormous challenges as housing shortages, traffic 
congestion, accelerating urbanization, more human activities in 
heritage sites, worsening air pollution, inadequate basic urban 

services and infrastructure (Guo et al.,  2020b). Focusing on 6 
SDG 11 indicators, China's data products, modeling method and 
support for policy-making are shared here (Table 4-1). 

Main Contributions
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Case Study

Estimates of population living in shantytowns as a 
percentage of main urban district residents in cities in China

Rapid urbanization is accompanied by the increase in shantytown 
dwellers, inadequate housing, and the excessive burden on 
urban infrastructure. In 2018, nearly 23.50% of the global 
urban population lived in shantytowns. COVID-19 in particular 
has dealt a heavy blow to the public health of more than one 
billion shantytown dwellers worldwide (Sachs et al.,  2020). 
Improving the living conditions of shantytowns has been widely 
recognized as one of the primary challenges for sustainable 
urban development in the coming decades. Based on this, SDG 
11.1.1 "proportion of population living in slums or informal 
settlements" is a key indicator in urban sustainability assessment 
(United Nations, 2015). There are, however, no explicit 
definitions or standards for informal settlements, slums and 
shantytowns in the world (Wurm et al., 2019). The shantytowns 
in China are hugely different from the slums in Brazil, India, 
and Africa in terms of infrastructure supply, population 
density, fire safety standards, and public health conditions. The 
Notice on Accelerating the Transformation of Shantytowns 
(Dangerous and Old Houses) issued by 7 Chinese government 
ministries including the Ministry of Housing and Urban-

Rural Development, the National Development and Reform 
Commission, and the Ministry of Finance defines shantytowns 
(dangerous and old houses) as areas, situated within the 
geographical scope of urban planning, where there is a high level 
of concentration of old, poor, simple-structure homes in great 
density with building safety concerns, incomplete functions, and 
inadequate infrastructure. Combining the above definition with 
the United Nations' standards of informal settlements, and in 
light of the features observed from the high-resolution satellite 
images, this study defines shantytowns as continuous areas, 
situated within the geographical scope of urban planning, where 
most homes are old, of low building height but in high density, 
roads are often irregular or dead-end, and necessary facilities are 
lacking.

Currently, there are no datasets on the area and population of 
informal settlements in China. To promote sustainable urban 
development, it is urgently needed to develop a shantytown 
monitoring and assessment indicators system consistent with 
SDG 11.1.1 based on Big Earth Data.

Background

The spatial boundaries of shantytowns in the main urban districts of 27 Chinese cities as of 
2019 were identified and extracted for the first time by adopting high-resolution satellite 
images from Gaofen-2 (GF-2) and advanced semantic segmentation models.

Shantytowns in 27 cities covered an area of 124.49 km2 with a total population of 1.032 
million in 2019. There were significant differences between Eastern and Western cities in the 
ratios of area and population of shantytowns to those of main urban districts. The proportion 
of Population in Shantytowns (PST) was above 3% in Guangzhou and Haikou, while the 
percentage of Area of Shantytowns (AST) was higher than 3% in Xi'an, Lanzhou, and Xining. 
These cities are under great pressure for urgent and orderly shantytown redevelopment.

Highlights

11.1 By 2030, ensure access for all to adequate, safe and affordable housing and basic services and upgrade slums.Target: 
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In conformity with SDG 11.1.1, a multi-scale shantytown 
identification scheme based on high-resolution satellite 
images (GF-2) was developed for the extraction of the spatial 
boundaries of shantytowns through the Deeplab V3 + semantic 
segmentation model. First, the proportions of cultivated land, 
towns, and human settlements were calculated based on 
EULUC-China vector data, and then the scope of main urban 
districts were determined (by the threshold of cultivated land 
being less than 0.01). Meanwhile, sufficient samples were 

collected through visual selection from GF-2 fusion images of 
27 cities. Second, shantytowns in these cities were mapped by 
adopting semantic segmentation models and transfer learning. 
Finally, the Populations in Main Urban Districts (PMUD) and 
shantytowns were estimated by using WorldPop data, and then 
the Proportion of PST (PPST) was calculated as follows:

Shantytowns in the main urban districts of the 27 Chinese cities 
covered an area of 124.49 km2 with a total population of 1.032 
million in 2019 (Fig. 4-1). There were significant differences 
among China's four economic regions (East, Central, West, 
and Northeast China) in the proportions of AST and PST to 
those of main urban districts. Specifically, East China had the 

largest shantytown areas of 44.06 km2 and 578 300 dwellers. 
West China ranked second, with 42.34 km2 in area and 228 600 
dwellers. The shantytowns in Central China covered an area 
of 21.48 km2 with 182 900 dwellers, while those in Northeast 
China were 16.61 km2 and had 42 000 people.

The shantytowns existed due to several factors (Fig. 4-2). 

Results and analysis

Figure 4-1. Difference in AST and PST in 27 major cities of China, 2019

◎ GF-2 panchromatic fusion image (0.8 m) in 2019.

◎ Essential urban land use categories in China (EULUC-China).

◎ World Population (WorldPop) data (100 m) in 2019.

◎ The 6th census data (2010) of China.

Data used

Method
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Figure 4-2 The AST and PST (a) and their shares in different regions (b)

Based on high-resolution satellite images and population raster 
data, the AST and PST in 27 cities across the four economic 
regions in China in 2019 were estimated by adopting semantic 
segmentation and transfer learning methods. The study 

produced rapid and accurate estimates, demonstrating a reliable 
methodology for estimating population living in slums or 
informal settlements in other countries, in support of achieving 
SDG 11.1.1.

Outlook

Guangzhou had the largest number of shantytown dwellers 
(257 600 people) due to the influx of migrant workers and 
other migrants. In Xi'an, shantytowns scattered around the 
city, resulting in its AST as large as 19.81 km2. Haikou's PST 
was about 6% due to the weak infrastructure in the old city 

and unbalanced urban development. In Harbin, which was 
traditionally an industrial city, the complexity of building types 
made more difficult the redevelopment of shantytowns, which 
accounted for about 2.5% of the main urban districts.
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Proportion of the population 
with easy access to public transportation in China

High-resolution gridded population distribution data by gender and age group for 2015 and 
2018 were produced to address the lack of such data under SDG 11.2.1.

In 2018, the proportion of the population with easy access to public transportation in urban 
built-up areas was 80.56% on average in China, while the proportions in the eastern coastal 
region and Sichuan and Chongqing were higher than the rest of the country. Compared with 
2015, 80% of Chinese cities saw higher proportions to varying degrees, while about 8% 
experienced slight declines.

Highlights

Public transportation, an irreplaceable part of urban transportation, 
supports economic activities and life in cities, and is a key 
factor in achieving most of the SDGs, especially those related 
to education, food security, health, and the environment (Pojani 
and Stead, 2015). According to the UN-HABITAT report 
(2018), the global demand for public transportation generally 
increased between 2001 and 2014. The greatest increase in 
public transportation was seen in China, where multiple plans 

for prioritizing the development of public transportation were 
implemented vigorously in a top-down approach. However, it is 
difficult to acquire and quantify complex public transportation 
networks using traditional analytical methods or to accurately 
evaluate the degree to which public transportation development 
matches the pace of urbanization. This is an area where Big 
Earth Data can be applied (United Nations, 2015; Chen et al.,  
2019; Deville et al.,  2014).

Background

For each administrative unit, the resident population, gender 
ratio, and proportion of each age group (0-14, 15-64, ≥65 years 
old) were extracted from the population sample survey and 
census data. The population was redistributed into the 1 km 
grid using a spatial downscaling model. Then the grid was 

superimposed on the rasterized gender ratio and the proportion 
of each age group to obtain the population distribution by gender 
and age group.

Next, public transportation stations (e.g., bus and metro stations) 
with spatial attributes were extracted from China's public 

◎ Public transportation network (e.g., bus and metro networks) 
data in China, 2015 and 2018.

◎ Land use data with 100 m resolution in China, 2015 and 
2018.

◎ 1% national population sample survey data, 2015 and census 

data, 2010.

◎ Auxiliary data including Visible Infrared Imaging Radiometer 
Suite  Day/Night Band (VIIRS/DNB) night-light remote 
sensing data, mobile positioning data from Tencent, and Digital 
Elevation Models (DEMs), 2015 and 2018.

Data used

Method

11.2 By 2030, provide access to safe, affordable, accessible and sustainable transport systems for all, improving road 
safety, notably by expanding public transport, with special attention to the needs of those in vulnerable situations, women, 
children, persons with disabilities and older persons.

Target: 
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Figure 4-3. SDG11.2.1 at provincial-level by gender and age group

The distribution of SDG 11.2.1 at the provincial level in 2018 is 
shown in Figure 4-3. The population with easy access to public 
transportation at the provincial/municipality level was 80.56% 
on average in 2018, with the proportions in the eastern coastal 
region and Sichuan and Chongqing generally higher than those 
in the rest of the country. Chongqing, Beijing, and Shanghai had 
the highest proportions in China of over 90%, while Tianjin, 
Sichuan, and eastern provinces Guangdong, Fujian, Zhejiang, 
and Jiangsu followed closely behind at 85%, and Qinghai and 
Tibet had the lowest proportions.

In terms of gender, there was little difference across provinces. 
In terms of age groups, all except Qinghai and Tibet had a 
relatively balanced distribution with only minor differences. In 
southern China, including Guizhou, Hunan, and Guangdong 
provinces, the 15-64 age group was 4-6% higher than other 
age groups. In the northern and western regions, such as 
Heilongjiang, Liaoning, Shanxi, Gansu, Hebei, Sichuan, and 
Yunnan provinces, the proportions in the 15-64 and ≥65 age 
groups were similar, but that for the 0-14 age group was, on 
average, 2-4% lower than the other two groups.

Results and analysis

transportation network data, and a 500 m buffer zone was 
created for each station. This buffer layer was superimposed on 
the above-mentioned gridded population data to calculate the 
population within the buffers.

Finally, these layers were first superimposed on the spatial data 
of urban areas extracted from land-use data and then aggregated 
from the grid level to the prefectural and provincial levels to 
calculate the proportion of the population with easy access to 
public transportation within the built-up area.
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Considering the distribution changes at the prefectural level 
from 2015 to 2018 (Fig. 4-4), the SDG 11.2.1 indicator increased 
in about 80% of the cities, with densely-populated cities with 
weak public transportation infrastructure in the past growing the 

fastest, and provincial capitals and economically advanced cities 
growing less because of their existing good public transportation. 
The indicator dropped slightly in about 8% of the cities where 
public transportation lagged behind the urban expansion.

Figure 4-4. Variations of SDG 11.2.1 at prefectural-level from 2015 to 2018

This case study used Big Earth Data that included public 
t ransportat ion networks and high-resolut ion gridded 
population data to estimate the distribution in China, by 
gender and age group, of the population with easy access to 
public transportation, on a grid-scale, in 2015 and 2018. The 

comparison and detection of variations for indicator SDG 
11.2.1 were realized at the prefectural and provincial levels. The 
methodology this case used is easy to apply with data easy to 
collect and update, and it can serve as a new approach to national 
evaluations and international comparisons of SDG 11.2.1.

Outlook
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Monitoring and assessing urbanization progress in China

Impervious surface products of 433 Chinese cities with a population over 300 000 from 1990 to 
2018 were independently created.

A new indicator—the ratio of Economic Growth Rate to Land Consumption Rate (EGRLCR)—
is proposed, as an expansion of SDG 11.3.1, to monitor and evaluate urbanization progress in 
China tri-dimensionally in terms of land, population, and economic development.

Since 1990, the rise in the ratio of Land Consumption Rate to Population Growth Rate (LCRPGR) 
had been accompanied by a decline in EGRLCR; the value of LCRPGR rose from 1.33 between 
1990 to 1995 to 2.15 between 2010 to 2015; after 2015, the expansion of urban built-up areas 
has been slowing down, but coordinated development of urbanization still faces challenges.

Highlights

SDG 11.3.1—"the ratio of Land Consumption Rate to Population 
Growth Rate (LCRPGR)" —can be used to quantify the relation 
between spatial urban expansion and population growth. 
According to United Nations statistics, between 2000 and 2014, 
the rate of land consumption in urban areas was 1.28 times that 
of population growth (UN, 2019). The relation of these two rates 
is essential to the sustainability of cities. Given that SDG 11.3.1 
is classified as a Tier II indicator (methods established but with 

poor data) and lacks the economic dimension, it cannot measure, 
in a comprehensive way, the degree of coordination among land, 
population and economic activities during urbanization. On that 
account, Big Earth Data can be instrumental in assessing the 
urbanization progress in China from the environmental, social, 
and economic perspectives and in improving the accuracy and 
scientific soundness of the assessments (Guo, 2019).

Background

Following UN terms (UN, 2019), urban impervious surface 
was converted to built-up area. Based on LCRPGR, a new 
indicator was proposed—the ratio of Economic Growth Rate to 
Land Consumption Rate (EGRLCR). The two indicators were 
computed as follows: 

◎ Population data of 433 Chinese cities with over 300 000 
urban inhabitants from 1990 to 2018 (1990, 1995, 2000, 2005, 
2010, 2015 and 2018) retrieved from the 2018 Revision of World 
Urbanization Prospects (UN, 2018).

◎ Global urban impervious surface products with a resolution 
of 30 m from 1990 to 2010 (1990, 1995, 2000, 2005 and 2010) 

and with a resolution of 10 m in 2015 and 2018.

◎ Population and Gross Domestic Product (GDP) data derived 
from the Chinese Urban Statistical Yearbook and China 
Statistical Yearbook from 1990 to 2018 (1990, 1995, 2000, 2005, 
2010, 2015 and 2018).

Data used

Method

11.3 By 2030, enhance inclusive and sustainable urbanization and capacity for participatory, integrated, and sustainable 
human settlement planning and management in all countries.

Target: 
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Figure 4-5 shows the urbanization process in China measured 
in terms of changes in LCRPGR and EGRLCR of 433 county-
level or higher cities. Along with the overwhelming spatial 
expansion coupled with a continuous slowdown in population 
and economic growth in urban areas, LCRPGR rose, while 
EGRLCR declined from 1990 to 2015, suggesting poor 
coordination among urbanization indicators in China. Thanks to 
a series of measures implemented by governments at all levels 
aimed at improving the quality of urbanization, such as the 
"National New Urbanization Program (2014-2020)", there has 
been a notable decrease in the areal extent of new urban land 
since 2015, reversing the trend where LCR had long exceeded 
PGR, and even been approaching EGR. 

The patterns and dynamics of LCRPGR in China 
over the past several decades are shown in Figure 
4-6. The study found that the rapid expansion 
of urban built-up areas has been effectively 
controlled since 2015, but the sustainability of 
urbanization is still under pressure. LCRPGR 
showed an upward trend in the northeastern and 
western regions, and remained relatively stable 
in the central and eastern regions; while it was 
fairly stable in megacities (with a population 
above 10 million), it was significantly higher, 
during multiple time periods, in super-large cities 
(with a population between 5-10 million) than 
cities in other categories; for resource-dependent 
cities, LCRPGR exceeded that of non-resource-
dependent cities in most time periods at five-year 
intervals. These findings suggest that urbanization 
is more out of balance in super-large cities and 
resource-dependent cities in the northeastern and 
western regions and it deserves special attention.

The spatiotemporal evolution in EGRLCR of 

Chinese cities shows that the gap between land consumption rate 
and economic growth rate has been narrowing, but imbalances 
remain between land consumption, population and economic 
growth rate. EGRLCR of resource-dependent cities is on a 
significantly downward trend, while it only fluctuates slightly 
in the eastern region; in megacities, the indicator is more stable 
than in cities of other sizes; it is much closer to the national 
average level in non-resource-dependent cities than in resource-
dependent cities. The results indicate that megacities and non-
resource-dependent cities in the eastern region have greater 
advantages in terms of economic resilience and sustainability 
of urbanization, while other cities face the double pressure of 
economic transformations and outflow of inhabitants.

where Urbt and Urbt+n are the total areal extent of the land 
consumed (extent of urban agglomeration area quantified as built-
up area) at the initial reference year t , and at the final reference 
year t+n, respectively; Popt and Popt+n are the total population 
of the specific spatial unit at the initial reference year t , and at 
the final reference year t+n, respectively; GDPt and GDPt+n are 
the total amount of GDP of the specific spatial unit at the initial 
reference year t  and at the final reference year t+n, respectively; 

LN refers to the natural logarithm of the ratio. LCR, PGR and 
EGR are the land consumption, population and economic growth 
rates between t  and t+n, respectively.

The values of LCRPGR and EGRLCR were calculated to 
measure the level of coordination among land consumption, 
population and economic growth in 433 cities of different 
urban sizes and functions and shed light on the spatiotemporal 
evolution of urbanization in China in the past three decades.

F igure 4-5.  Changes in rat io  of  Land 
Consumption Rate to Population Growth Rate 
(LCRPGR) (a) and, in ratio of Economic 
Growth Rate to Land Consumption Rate 
(EGRLCR) (b) in China from 1990 to 2018

Results and analysis
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Figure 4-6. Spatiotemporal evolution of land use efficiency of cities in China from 1990 to 2018

In this case, multi-sourced remote sensing data were used 
to map the impervious surfaces of 433 Chinese cities with a 
population of more than 300 000 from 1990 to 2018, and then 
produce a comparable dataset on changes in urban built-up areas, 
needed to calculate LCR. A new indicator was proposed, i.e., 
the ratio of Economic Growth Rate to Land Consumption Rate 
(EGRLCR), which coupled with LCRPGR and aided by Earth 
observations and census data, can evaluate the spatiotemporal 

evolution of urbanization in China from the economic, social 
and environmental perspectives. Future work will focus on 
combining international open data sources and our own global 
urban impervious surface products to better realize the spatial 
coupling of population and economic data in urban built-up areas, 
and improve the quantitative assessment of the coordination of 
land, population and economic dimensions, so that global level 
monitoring of urbanization could become possible.

Outlook
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Monitoring of disaster loss reduction and 
promotion of sustainable development in vulnerable areas in China

The losses caused by natural disasters have decreased significantly in China as a whole. 
Comparing 2013 and 2019, the number of deaths and missing persons per 100 000 population 
dropped from 0.17 to 0.06, the number of directly affected persons per 100 000 population 
decreased from 28 739.87 to 9 285.71, and direct economic loss in relation to GDP attributed to 
disasters dropped from 0.98% to 0.33%.

Highlights

In this century, as urbanization and the growth of economy 
pick up speed, disasters have become a major constraint to 
sustainable development. Under the United Nations 2030 
Agenda for Sustainable Development, substantially reducing 
losses from disasters, with a focus on protecting the poor and 
vulnerable groups, is an important indicator for promoting 
sustainable development, one that has been embraced by the 

Chinese government, and incorporated into its Plan of National 
Comprehensive Disaster Prevention and Mitigation (2016-2020). 
Economically backward regions in western China, especially 
those that had experienced major disasters, have stepped up 
efforts of disaster prevention and mitigation, rehabilitation and 
reconstruction, effectively promoting sustainable development of 
these disaster-prone regions.

Background

Statistical and spatial data were used synergistically to 
finely monitor changes in disaster losses and socioeconomic 
development from multiple dimensions. Deep learning methods 
were applied to extract information from imagery on disaster-
vulnerable areas, progress of rebuilding projects, distribution of 

buildings and construction and repair of transportation facilities. 
Parameter inversion of long time series of satellite remote 
sensing records was used to monitor in real time the state of the 
environment. 

◎ Multi-sourced remote sensing data from 2009 to 2019: 
satellite remote sensing data such as Gaofen-1, Gaofen-2 and 
Beijing-2, as well as airborne remote sensing data.

◎ Statistical and bulletin data from 2009 to 2019, including 
Chinese statistical yearbooks of regions, counties, cities, 
population, civil affairs; statistical yearbooks of Qinghai 
and Gansu; data verified by the Ministry of Emergency 

Management, the Ministry of Civil Affairs and the Office of the 
National Disaster Reduction Committee in consultation with 
other relevant departments on the situation of natural disasters 
nationwide; China's Flood and Drought Disasters Bulletin; 
National Geological Disasters Bulletin.

◎ Survey data on the post-disaster reconstruction area of Yushu, 
2019.

Data used

Method

1) Dynamic monitoring of changes in China's disaster losses

The overall monitoring of disaster losses, population and 
economic statistics showed that natural disaster-induced losses 
decreased significantly (Fig. 4-7). Major reductions were 
observed in all the indicators as of 2019, compared with those 

of 2013: the number of disaster-related deaths and missing 
persons per 100 000 decreased from 0.17 to 0.06 ; the number of 
directly affected persons per 100 000 population decreased from 
28 739.87 to 9 285.71; direct economic loss in relation to GDP 
attributed to disasters decreased from 0.98% to 0.33%.

Results and analysis

11.5 By 2030, significantly reduce the number of deaths and the number of people affected and substantially decrease the 
direct economic losses relative to global gross domestic product caused by disasters, including water-related disasters, 
with a focus on protecting the poor and people in vulnerable situations.

Target: 
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2) Monitoring of sustainable development 
in disaster-vulnerable areas of China 

The vast western China, inhabited by many 
ethnic groups, has a high density of poor 
population and is prone to disasters. The 
Yushu earthquake and Zhouqu debris flow 
in 2010 and the Jiuzhaigou earthquake in 
2017 had severe, negative impact on local 
sustainabili ty.  Big Earth Data-enabled 
monitoring of these disaster-vulnerable areas 
showed that government projects, such as 
disaster prevention, engineering interventions, 
and improving earthquake resistance of 
residential housing, have effectively promoted 
sustainable development. Table 4-2 and Figure 
4-8 below show the dynamic monitoring of 
sustainable development in the reconstruction 
area of quake-hit Yushu.

Figure 4-7. Changes in natural disaster losses in China (excluding Hong Kong, Macao and Taiwan province)

Measures to promote 
sustainable development

1. Strengthening 
disaster prevention 
and mitigation works

No major geological disasters or floods occurred by the end of 2019, 
with the completion of projects to fix 18 mudslide-prone areas and 4 
sections of unstable slopes, and to reinforce 11.75 km of the Batang River 
embankment and 9.65 km of the Zhaxike River embankment.

Earthquake resistance levels were improved for housing of urban 
residents, farmers and herders. 292 sites of concentrated housing 
development for farmers and herders had sound infrastructure.

Gongyu expressway, national highway 214, provincial highways 308 and 
309 were completed or reopened to traffic. All prefectures and counties 
were accessible by secondary asphalt roads.

Cultural and religious facilities such as the Yushu Earthquake Site 
Memorial Hall, Princess Wencheng Temple, and Changu Temple were 
preserved and protected. Compared with before the disaster, the number 
of beds in healthcare institutions increased by 3.3 times and beds in social 
welfare adoption agencies increased by 8.4 times.

Through afforestation efforts, the ecosystems and environment of the 
disaster-hit area were rehabilitated, with the average Gross Primary 
Productivity (GPP) of vegetation up by about 40%.

Yak, black barley and other special agro- and animal husbandry industries 
continued to expand; the cultural tourism industry grew vigorously; 
poverty was basically eradicated.

2. Improving quake-
resistance of housing

3. Strengthening 
infrastructure

4. Improving public 
services capacity

5. Conserving 
ecosystems and the 
environment

6. Promoting distinctive 
local industries

Sustainable development status of the reconstruction area after the 
earthquake in Yushu

Table 4-2 Measures to promote sustainable development in disaster-
prone areas and their effects in China (using the reconstruction area 
in quake-hit Yushu as an example)
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Figure 4-8. Dynamic monitoring of vegetation recovery in the Yushu post-earthquake reconstruction areas

In recent years, China has significantly enhanced its overall 
capacity of disaster prevention and mitigation in cities and 
human settlements. Losses caused by natural disasters have 
dropped sharply. However, the complex disaster-prone 
environment, coupled with frequent extreme meteorological and 
hydrological conditions, poses a serious challenge to continued 
major reduction in disaster-induced losses and the sustainable 

development of vulnerable areas such as in western China. The 
way forward is to vigorously promote the integrated application 
of advanced technologies and sustainable development theories, 
strengthen research on the dynamics of disasters, and overcome 
technical bottlenecks in disaster prediction, early warning, 
monitoring, assessment and management. 

Outlook
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Impact assessment of storm surge inundation in Shenzhen

Typhoons Nida and Mangkhut that hit Shenzhen in 2016 and 2018, respectively, were simulated 
and urban floodwater depth data were obtained with an average accuracy of 90.68%.

A storm-surge digital-twin assessment system was established to assess the number of people 
affected/injured/killed by and direct economic losses from storm surge hazards in Shenzhen.

For Dapeng new district, Bao'an district, Nanshan district, and Futian district, which suffered 
severe seawater influx, additional flood-control dikes should be built along the coast and be 
reinforced with sandbags prior to a storm surge.

Highlights

Storm surge hazards have become one of the most serious 
natural disasters, inflicting increasing losses and posing a 
challenge to social and economic sustainability in Shenzhen 
and other coastal cities, where there is a great density of both 
population and economic activities. Currently, three problems 
hinder the assessment of direct economic losses and the number 
of people affected: (1) a lack of high-resolution historical data; (2) 

an over-reliance on statistical data in traditional methods; and 
(3) a multitude of influencing factors. A storm-surge digital-twin 
method, based on Big Earth Data, can quickly evaluate the direct 
economic losses and people affected in Shenzhen by combining 
the numerical simulation model and expert empirical model. 
It can provide vital support for decision-making on targeted 
disaster prevention.

Background

Focusing on SDG 11.5 indicators of direct economic losses, 
affected people, and deaths, the evaluation method was 
established as follows. First, the Finite Volume Community 
Ocean Model (FVCOM), an unstructured-grid based finite-

volume ocean numerical simulation model, was utilized to 
calculate the depth of floodwater, to overcome the lack of 
historical data. Second, the economic loss-assessment model, 
proposed by the National Natural Hazard Comprehensive 

◎ The US National Oceanic and Atmospheric Administration's 
(NOAA) Global Self-consistent, Hierarchical, High-resolution 
Geography Database (GSHHGD).

◎ The US National Aeronautics and Space Administration's 
(NASA) 1/8-degree Cross-Calibrated Multi-Platform (CCMP) 
Wind Vector Analysis Product.

◎ NOAA's 1/60-degree global relief model of Earth's surface 
that integrates land topography and ocean bathymetry.

◎ Oregon State University's 1/30-degree harmonic constants.

◎ Ten-meter resolution national land classification data in 2018 
(Gong et al., 2019).

◎ OpenStreetMap's administrative boundary dataset.

◎ The China Meteorological Administration's typhoon dataset.

◎ WorldPop's 100-meter resolution population count dataset.

◎ The Construction Cost Index and Shenzhen Statistical 
Yearbook.

◎ Tidal data from the tide-gauge stations in Shekou Port and 
Yantian Port, Guangdong.

Data used

Method

11.5 By 2030, significantly reduce the number of deaths and the number of people affected and substantially decrease the 
direct economic losses relative to global gross domestic product caused by disasters, including water-related disasters, 
with a focus on protecting the poor and people in vulnerable situations.

Target: 
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Figure 4-9. The direct economic loss assessments of Nida in 2016 and Mangkhut in 2018 based on the economic loss-assessment model

Research Group, was utilized to quantitatively estimate the total 
direct economic losses by evaluating the damage rate and unit 
value for each affected construction. Finally, the flood risks to 
people methodology, proposed by the British Hydraulic Research 

Institute, was adopted to establish the relationships between the 
people affected and the urban floodwater characteristics, urban 
characteristics, and population characteristics to quantitatively 
evaluate deaths and the number of people affected.

Typhoons Nida and Mangkhut hit Guangdong province on 
August 2, 2016 and September 16, 2018, respectively. Their 
storm surges were simulated to calculate the water depths, which 
were 87.86% and 93.51% accurate, respectively, with an average 
accuracy rate of 90.68% when compared with the tide level 
data recorded by the Shekou and Yantian tide gauge stations 
(113°53′E, 22°28′N and 114°16′E, 22°35′N). 

Figure 4-9 shows the simulated direct economic losses from 
Nida were 367 900 and from Mangkhut 265 million yuan. 

According to statistics of the Guangdong Provincial Oceanic and 
Fishery Department, the direct economic losses from Nida were 
360 000 yuan and the statistics of the Guangdong Provincial 
Department of Natural Resources put the direct economic losses 
from Mangkhut at 255 million yuan, pointing to a high accuracy 
of the simulation results.

Figure 4-10 shows the assessment results of the affected 
population. The simulated results were: for Nida, 18 600 
affected, 24 injured, and no death; for Mangkhut, 28 100 

Results and analysis
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Figure 4-10. The distribution of people affected by Nida in 2016 and Mangkhut in 2018 
based on the flood risks to people methodology

In light of indicators SDG 11.5.1 and 11.5.2, this case study 
assessed the direct economic losses, people affected and injured  
and deaths in Shenzhen caused by storm surge hazards—Nida 
in 2016 and Mangkhut in 2018, using a storm-surge digital-
twin assessment method. The case can provide vital support 
to decision-making on storm surge hazard prevention in 
Shenzhen.

For more comprehensive disaster-prevention decision support, 
future work should: (1) simulate more storm surge hazards that 
posed a serious threat to Shenzhen; and (2) simulate storm surge 
hazards of different intensities in Shenzhen and evaluate the 
direct economic losses and the number of people affected, with 
the purpose of giving early warning to the disaster-prone areas 
and informing decision-making.

Outlook

affected, 41 injured and no death. 
The statistics published by the 
Guangdong Provincial Oceanic and 
Fishery Department showed Nida 
affected 18 300 people and caused 
no death in Shenzhen,  while 
the statistics of the Ministry of 
Emergency Management of China 
were that Mangkhut caused a total 
of five deaths in the five provinces 
of Guangdong, Guangxi, Hainan, 
Hunan and Guizhou and no death 
in Shenzhen. The simulated results 
were accurate.

Most of the direct economic losses 
and affected people were in Bao'an 
district, Nanshan district and Futian 
district, due to their geographical 
proximity to the sea and flat 
terrain. Dapeng new district also 
suffered the influx of seawater, 
but did not incur too much loss 
thanks to its mountainous terrain. 
To reduce future losses, the flood-
control dikes should be reinforced 
and sandbags should be made 
available in Bao'an, Nanshan and 
Futian districts. 
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Share of open public space area in cities in China

The share of open public space area in built-up areas in Chinese provinces (excluding Hong 
Kong, Macao and Taiwan province) averaged 19.50% in 2018, 1.5 percentage points higher 
than 17.98% in 2015.

In prefectural-level cities, the share of open public space area in nearly 50 cities exceeded 20%. 
The share was larger on the southeast side of Hu Line than that on the northwest side. It was 
larger in the city clusters in the Beijing-Tianjin-Hebei region, Yangtze River Delta, Pearl River 
Delta, Sichuan basin and central Yunnan than in their surrounding regions.

Highlights

The monitoring and evaluation of urban open public space 
is helpful to promoting urban space transformation, quality 
upgrading, and sustainable development. The public space as 
defined in SDG 11.7.1 mainly includes public green space and 
urban roads. The former can improve people's wellbeing and 
health, while the latter is a direct indicator of urban prosperity. 
UN-HABITAT is responsible for SDG11.7 evaluation globally. 
The Atlas of Urban Expansion , that analyzes 95 406 km2 of 
built-up areas in selected cities around the world, finds that 

59% of them are occupied by urban public spaces, and nearly 
half are urban roads. According to China's Progress Report on 
Implemention of the 2030 Agenda for Sustainable Development 
(2019), by 2018, a total of 56 000 km of greenways had been 
built, and the urban living environment greatly improved. There 
is, however, no national monitoring and evaluation result of 
this indicator. This report adopted the design and method of UN 
SDGs to evaluate China's progress in SDG 11.7.1 and compared 
the results of 2015 and 2018.

Background

The "urban land" subcategory was extracted from the land 
cover data to establish the built-up area, and the public space 
data (green space, square and roads) was extracted from the 
navigation vector data. The evaluation process was as follows: 
(1) Define a Generate Fishnet function, and use the grid 
transformation method to generate national kilometer grid; (2) 
Overlay the national grid with the spatial data of green space and 
square to generate the grid spatial data; (3) Convert highways, 

provincial roads, county roads, township roads and other urban 
roads into polygon data by their width, and overlay with the 
national grid to generate kilometer grid road spatial data; (4) 
Integrate road data and public green space data at the grid scale 
and divide by the total urban built-up area to obtain the share of 
open public space area; (5) Convert the share from the kilometer 
grid scale to the county, municipal, provincial and national 
scales through spatial statistical analysis.

◎ SDG 11.7.1 Evaluation Result, 2015 (Guo et al.,  2019).

◎ Land cover data for China, 2018.

◎ Navigation vector data of cities in China, 2018.

◎ Statistical yearbook of prefectural-level cities in China.

Data used

Method

The evaluation of open public space in prefectural-level Chinese 
cities in 2018 revealed the following. At the municipal scale, 
the share of open public space in nearly 50 cities exceeded 

20%. Beijing, Shenzhen and Xiamen had the largest share, 
exceeding 30%, with urban roads taking up more than 25%. 
From the perspective of spatial pattern (Fig. 4-11), the share 

Results and analysis

11.7 By 2030, provide universal access to safe, inclusive and accessible, green and public spaces, in particular for women 
and children, older persons and persons with disabilities.

Target: 
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Figure 4-12. Changes in the share of open 
public space at provincial scale in China

Figure 4-11. Share of open public space area in prefectural-level Chinese cities in 2018

This case study evaluated and compared urban open public space, as defined by SDG 
11.7, in China in 2015 and 2018 by using navigation and land cover data, and found 
that the method it adopted to monitor changes in Chinese cities concerning SDG 11.7.1 
was easy to apply and data access was not difficult. 

This method is a solution to the evaluation of SDG 11.7.1, but it cannot yet be applied 
to evaluating open public space categorized by gender, age or people with disabilities. 
Future work needs to be done to address this method's sensitivity to the definition of 
urban built-up area and data accuracy, and the minor errors in the data of built-up area, 
extracted from "urban land" subcategory.

Outlook

of open public space area of cities on the southeast side of the Hu Line was generally 
larger than that on the northwest side, reflecting significant regional differences. From 
the perspective of urban agglomerations, the scale of open public space area in the 
city clusters in the Beijing-Tianjin-Hebei region, Yangtze River Delta, Pearl River 
Delta, Sichuan basin and central Yunnan was generally larger than in their surrounding 
regions, demonstrating a clear feature of spatial agglomeration.

The share of open public space in built-up areas in Chinese provinces (excluding Hong 
Kong, Macao and Taiwan province) averaged 19.50% in 2018, 1.5 percentage points 
higher than 17.98% in 2015. Guangdong and Beijing had the largest share of 28.60%, 
while Guangxi had the smallest share of 11.16%. From 2015 to 2018, the share of open 
public space in all provinces increased slightly except for Beijing, Chongqing, Sichuan, 
Fujian and Hubei (Fig. 4-12). Both urban built-up areas and open public space mainly 
including squares, parks and roads increased. The increase in open public space outpaced 
urbanization, which began to slow down, reflecting the growing attention China pays to 
the planning and improvement of open public space in urban development.

The share of open public space area increased with the expansion of cities, and the scale 
of open public space in super-large cities was larger than that in smaller cities. It was 
also in sync with economic development, being larger in more advanced cities. Level of 
economic development, living standards, urbanization rate and population size were all 
factors having a strong influence on the scale of open public space.
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Integrated assessment of 
SDG 11 indicators at the provincial scale in China

The first integrated assessment was undertaken at the provincial scale of the five targets and 
seven indicators under SDG 11 by utilizing Big Earth Data and national statistical data. 

Compared with 2015, overall sustainability improved in 2018 at the provincial level. The SDG 
11 integrated index was higher in the eastern provinces than in the western ones. It increased in 
28 provinces but decreased in 3 others. The average value of SDG 11 integrated index increased 
from 0.58 in 2015 to 0.65 in 2018.

Highlights

The Sustainable Development Solutions Network (SDSN) 
calculated the integrated index of the 17 SDGs for each country 
in the world using an equal weight method (Sachs et al.,  2019). 
Xu et al.  (2020) used the same approach to calculate the index 
for each provincial-level administrative region of China. Based 
on data availability, this work focused on the five targets and 

seven indicators under SDG 11 and made integrated assessment 
of SDG 11 at the provincial-level scale through comparison 
between 2015 and 2018. Furthermore, for each province, the key 
targets and indicators were identified, where special attention is 
required in order for SDGs to be achieved by 2030.

Background

◎ Public transportation information data of China.

◎ Data product of ratio of land consumption rate to population 
growth rate.

◎ Hazard data from China's statistical yearbooks.

◎ City statistical yearbooks of China.

◎ Annual average PM2.5.

◎ Land use/land cover data.

◎ Gridded population data.

◎ Public spaces in Chinese urban built-up areas.

Data used

11.2 By 2030, provide access to safe, affordable, accessible and sustainable transport systems for all, improving road 
safety, notably by expanding public transport, with special attention to the needs of those in vulnerable situations, women, 
children, persons with disabilities and older persons.

11.3 By 2030, enhance inclusive and sustainable urbanization and capacity for participatory, integrated and sustainable 
human settlement planning and management in all countries.

11.5 By 2030, significantly reduce the number of deaths and the number of people affected and substantially decrease the 
direct economic losses relative to global gross domestic product caused by disasters, including water-related disasters, 
with a focus on protecting the poor and people in vulnerable situations. 

11.6 By 2030, reduce the adverse per capita environmental impact of cities, including by paying special attention to air 
quality and municipal and other waste management.

11.7 By 2030, provide universal access to safe, inclusive and accessible, green and public spaces, in particular for women 
and children, older persons and persons with disabilities.

Target: 
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1) Normalization

In order to eliminate residuals caused by different dimensions, 
self-variation or extreme values of indicators, it is necessary 
to standardize the original indicators between 0 and 1 with the 
following equation:

A value of the normalized indicators closer to 0 indicates a 
worse performance while a value closer to 1 indicates a better 
performance. To remove the effects of extreme values, data at 
the bottom 2.5th percentile were selected as the lower bound 
for normalization, which is put forward by Organisation for 
Economic Co-operation and Development (OECD) and JRC. 
The selection of the upper bound drew on the method from the 
Sustainable Development  Report  2019 (Sachs et al.,  2019) and 
Xu et al. (2020).

2) Calculation of the integrated index 

The following equation was used to calculate the integrated 

index according to the method in the 2019 Sustainable 
Development report (Lafortune et al.,  2018):

where Ii is SDG 11 integrated index of province i; Ni indicates 
the number of targets of province i; Nij denotes the number of 
indicators of targets j of province i; Nijk is the value of indicators 
of targets j of province i.

3) Quantifying the level of achievement of targets

To assess the progress on a particular target at the provincial 
level, an SDG 11 dashboard was generated, with the indicators 
divided into four levels (green, yellow, orange and red) 
(Lafortune et al.,  2018). Green is the upper bound of each 
indicator. The colors yellow, orange and red represent distances 
to achieving SDG 11. Red denotes the lower bound of each 
indicator. The upper and lower bounds are the same as for the 
normalization of the integrated index.

Figure 4-13. The spatial distribution of SDG 11 integrated index at the provincial scale

2) Progress in sustainable development targets

Figure 4-14 shows the SDG 11 dashboard at the provincial scale 
in China from 2015 to 2018. On the whole, good progress was 
made in achieving SDG 11.3, while more effort was needed to 
achieve SDG 11.6. Specifically, eastern provinces were closer 

to realizing SDG 11.2 and 11.3, while the central and western 
provinces were still further from realizing SDG 11.5. The 
provincial governments, while keeping up efforts on targets 
where good progress is made, should pay more attention to those 
targets where progress is lacking.

Method

1) SDG 11 integrated index 

Figure 4-13 shows the spatial distribution of SDG 11 integrated 
index at the provincial scale. In general, the integrated index was 
higher in the eastern provinces than in the western ones. It went 
up in 28 provinces and down in 3 provinces in 2018 compared 

with 2015, with its average value increasing from 0.58 to 0.65. 
The number of provinces with an integrated index value below 
0.6 decreased from 20 to 8, while the number of those above 0.68 
increased from 8 to 10. 

Results and analysis
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Figure 4-14. SDG 11 dashboard

In this case, the SDG 11 integrated index was calculated using 
the method of SDSN in the 2019 Sustainable Development 
Report, which can serve as a tool for the evaluation of the 
sustainability of SDG 11. Whether each province performed 
well or not in achieving SDG 11 is clearly indicated by the value 
of each indicator and on the dashboard. Indicators and targets 
under SDG 11 can impact each other, and no indicator should be 
achieved at the expense of another. Therefore, the interactions 
between indicators should be studied in the future.

Outlook

This chapter focuses on the five technical targets and six of their 
indicators under SDG 11. A Big Earth Data-enabled method was 
developed to evaluate multiple SDG 11 indicators in a dynamic, 
spatially specific, and quantitative way. An integrated assessment 
was made at the provincial level in China, which can be of value 
to future dynamic monitoring and integrated evaluation of urban 
sustainability.

In terms of data products, this chapter created high-resolution 
gridded population data by gender and age for 2015 and 2018, 
and independently produced vector dataset of built-up areas 
of 433 Chinese cities between 1990 and 2018, and datasets 
of integrated urban assessment, covering shantytowns, public 
transportation, urbanization, disasters and open public space. 
All are of great use to evaluating urban sustainability in a 
comprehensive way.

In terms of methods, the chapter developed an advanced 
semantic segmentation and transfer learning model to extract 
data on shantytowns in China, and proposed a new indicator—
the ratio of economic growth rate to land consumption rate, 
which will expand and localize SDG 11.3.1 and enrich the SDG 
11 indicator framework system.

The above-mentioned independently produced Big Earth Data 
and model were applied to monitoring and comprehensive 
evaluation of SDG 11 indicators in China. The results can 
be used in policy making and finding a Chinese solution to 
sustainable urban development.

The following research should be prioritized in future work.

◎ Develop Big Earth Data science, produce high quality 
evaluation datasets on that basis, and find new methods of 
monitoring SDG 11 indicators.

◎ Promote SDG 11-related data sharing and technology among 
developing countries.

◎ Make joint comprehensive evaluations of SDG 11 
implementation in typical regions in the world through 
international cooperation in service of both United Nations goals 
and China's national strategy.

Summary
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Goal 13 of the UN Sustainable Development Goals (SDG 13) — 
"Take urgent action to combat climate change and its impacts" 
(Climate Action) is a call to action to reduce climate change-
related hazards and natural disasters, mitigate the impacts of 
climate change and build greater capacity for climate change 
response. Far from being a standalone goal, SDG 13 is vital to 
the attainment of all SDGs.

This report focuses on two targets: 13.1 and 13.2. SDG 13.1 is 
to "strengthen resilience and adaptive capacity to climate-related 
hazards and natural disasters in all countries." Climate change 
is a key driver of disaster losses, according to a report by the 
United Nations Office for Disaster Risk Reduction (UNDRR), 
which oversees the implementation of the Sendai Framework 
for Disaster Risk Reduction, an instrument guiding the 
implementation of SDG 13.1. The Paris Agreement serves as the 
basis for the implementation of SDG 13.2 — "Integrate climate 
change measures into national policies, strategies and planning." 
Evaluation of their implementation to date has been long on 
statistics but short on granular analyses and disaggregated data 
(by disaster type and by scope of impact), along with a dearth 
of further guidelines and programs for climate change response. 
Indicators under these two targets, all of which are Tier II, have 
not caught up with the progress made in monitoring practice 
aided by Earth observation technology. They need to be updated 

as a matter of urgency to also include information on the spatial 
distribution of climate change-related disasters and climate 
change impacts. Only then can more targeted responses be 
elaborated.

As stated in the 2019 Report on China's Policies and Action on 
Climate Change , China pursues a proactive national strategy 
to address climate change, with a series of measures in place 
including, inter alia, industrial restructuring, energy conservation, 
emission reduction and afforestation to increase carbon sinks. 
China's CO2 emission intensity (volume of emissions per unit 
of GDP) in 2018 dropped by 45.8% from the 2005 level on a 
cumulative basis, the equivalent to a 5.26 billion-ton reduction 
of CO2 emissions. Given its lasting impacts, climate change is 
something that humanity has to confront in concert for a long 
time to come. People are still looking for informed answers to 
such questions as what climate change impacts are already or 
will soon be felt in China and elsewhere, and how to reduce 
impacts and losses from climate change and achieve sustainable 
development. This report focuses on two targets, namely, SDG 
13.1 and SDG 13.2, and presents contributions on three fronts: 
methodological models that reflect climate change parameters, 
spatially disaggregated data products and support to policy-
making in climate change response.

Background
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Table 5-1 Cases and Their Main Contributions

Target Case Contributions

13.1 Strengthen resilience and 
adaptive capacity to climate-related 
hazards and natural disasters in all 
countries

Intensity and frequency 
of extreme high-
temperature events and 
heatwaves in China

Data product: homogenized temperature series datasets
Method: a combination of non-stationary models and 
parametric/non-parametric methods

13.2 Integrate climate change 
measures into national policies, 
strategies and planning

Predicting the impacts 
of climate change on the 
phenology of China's 
main crops

Data product: near-term probabilistic forecast datasets for 
the phenology of China's main crops under climate change 
scenarios
Support to policy-making: informing China's policy on food 
production in response to climate change

Two cases on SDG 13 are presented in this study (Table 5-1), 
corresponding to two SDG targets on climate-related hazards 
and natural disasters and climate change response. In terms of 
data products, datasets on the spatial distribution of heatwaves 
and a probability ensemble on the phenology of main crops are 
provided on the basis of past statistics. In terms of methodology, 
a meteorological data homogenization approach combining non-
stationary models and parametric/non-parametric methods is 

presented. In terms of support to policy-making, pre-emptive 
response is recommended in view of the projected forward 
shifts in the anthesis and maturation of wheat and maize 
that may jeopardize their yields. This report aims to offer a 
fresh perspective and propose new solutions to help further 
our understanding of the impact of climate change in all its 
manifestations and develop mitigation and adaptation strategies 
in response to a whole range of issues posed by climate change.

Main Contributions
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Case Study

Homogenization of data minimizes the systematic deviations 
resulting from relocation of stations or changes in observational 
methods and techniques. The highest values of daily maximum 
temperatures in the summer half-year (April through September) 
captured at all stations are used to work out periods and levels 
of recurrence through Generalized Extreme Values (GEV) 
fitting. Dynamic reoccurrence periods are computed with a 
linear model in time using location parameters, from which the 
annual frequency of "once-in-N-year" extreme high-temperature 

events is worked out for each station. A "once-in-N-year" extreme 
high-temperature event is one where the probability of the year's 
maximum temperature reaching or exceeding a given recurrence 
threshold under the climatic conditions of the current year is 1/N. 
Hence the average yearly frequency of extreme high-temperature 
events at every station across China and in each of the seven regions 
can be calculated. The intensity of an extreme high-temperature 
event is expressed as a temperature value (in Celsius) in excess 
of a given "once-in-N-year" level of recurrence.

Intensity and frequency of 
extreme high-temperature events and heatwaves in China

The central aim of the Paris Agreement is "to strengthen the 
global response to the threat of climate change by keeping 
a global temperature rise this century well below 2 degrees 
Celsius above pre-industrial levels and to pursue efforts to limit 
the temperature increase even further to 1.5 degrees Celsius". 
Extreme high-temperature events and heatwaves have become 
some of the predominant climate-related disasters ravaging 
China in recent decades.

In this study, we introduce the notion of "dynamic reoccurrence 

periods" to further refine the indicators of extreme high-
temperature events and heatwaves and expand the scope of 
their application. They are particularly serviceable in describing 
extreme high-temperature events and heatwaves that have 
occurred in recent years. Characterization of the spatiotemporal 
evolution of extreme high-temperature events enables an 
accurate and holistic understanding of the pattern of extreme 
high-temperature events and heatwaves in China, to provide 
science-informed support for policy-making under relevant 
SDGs.

◎ Daily maximum temperature series data from 754 stations 
from 1960 to 2018 compiled and published by the Information 

Center of the China Meteorological Administration, adjusted and 
homogenized (Li et al.,  2015). The baseline period is 1979-2018.

Background

Data used

Method

The spatiotemporal changes in the intensity and frequency of extreme high-temperature events 
and heatwaves in China are assessed over the 1990-2018 timeframe, based on homogenized 
temperature series data from 754 terrestrial weather stations, pointing to significantly 
increased intensity and frequency of extreme high-temperature events and heatwaves in China 
since the late 1990s.

Highlights

13.1 Strengthen resilience and adaptive capacity to climate-related hazards and natural disasters in all countries.Target: 
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Figure 5-1. The average frequency and intensity of "once-in-20-year" extreme high-temperature events and heatwaves across 
China and in each region, 1990-2018 

The frequency of "once-in-20-year" extreme high-temperature 
events in China has markedly increased since the late 1990s (Fig. 
5-1). Since 2000, five years, i.e. 2000, 2003, 2010, 2013 and 
2017, were marked by an unusually high incidence of extreme 
high-temperature events and heatwaves. In each of those five 
years, notable extreme high-temperature events and heatwaves 
happened in two or three of the seven climatic regions of China, 

with marked variations in both frequency and intensity from year 
to year. As a general trend, each region is hit by an unusually 
high incidence of extreme high-temperature events and 
heatwaves once every five to ten years. The intensity of extreme 
high-temperature events and heatwaves in northern regions is 
relatively higher than that in southern regions.

Notable extreme high-temperature events and heatwaves have 
been observed almost every year since 2010 (Fig. 5-2). The 
most spatially extensive extreme high-temperature events and 
heatwaves happened in 2010 when more than half of the regions 
across China recorded extreme high-temperature events. The 
intensity of extreme high-temperature events and heatwaves 
peaked in 2013 when dozens of stations in central and eastern 
China recorded around 10 days of extreme high temperatures. 
In 2016 and 2017, extreme high-temperature events and 

heatwaves also affected many parts of China. Worth noting is the 
high incidence of relatively defined extreme high-temperature 
events and heatwaves in some high-latitude or high-altitude 
areas in recent years. A record fifteen-day spell of extreme high 
temperatures hit a mountainous area in southwestern China in 
2014. Similarly, in 2010, 2015 and 2018, eight to ten days of 
extreme high temperatures were recorded at some high-altitude 
and high-latitude stations, topping the rest of the country for that 
year in each case.

Results and analysis
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This study enables a better understanding of extreme high-
temperature events and heatwaves through the lens of recurrence 
periods and levels by modifying the criteria of their definitions. 
There has been a persistently high incidence of extreme high-
temperature events and heatwaves across China in recent 
years, so much so that they have become routine occurrences 
– approaching or reaching record high temperatures in 
approximately one third of regions in China every five years or 
so since 2000. This trend has been more pronounced in recent 
years, with extensive or highly intense heatwaves each and 
every year. It is therefore necessary to better forecast overall 
climate and weather conditions associated with extreme high-
temperature events and build greater capacity for holistic 
planning to respond to extreme high-temperature events and 
heatwaves of disastrous proportions in different regions. 
Furthermore, enhanced monitoring and forecasts are required for 
relatively defined heatwaves in high-latitude and high-altitude 

areas. Excessive heat in absolute terms is rare in these areas, 
hence the tendency to overlook them in the past. Yet, in recent 
years, relatively defined extreme high-temperature events and 
heatwaves in these areas have occurred more frequently than in 
central and eastern parts of China known for a high incidence 
of classic heatwaves, posing an equally grave threat to local 
agricultural and forest ecosystems and infrastructure.

Alongside China's rapid socioeconomic development over the 
recent decades, there has been a huge influx of population into 
large and medium-sized cities, as well as sea change to land uses. 
An important question to explore and answer going forward is 
how to assess, with greater precision, the impacts of extreme 
high-temperature events and heatwaves on productive activities, 
daily life, physical health and natural ecosystems by leveraging 
demographic, land and other Big Earth Data and factoring in the 
exposures and vulnerabilities of different communities and systems.

Outlook

Figure 5-2. The spatial pattern of "once-in-5-year" extreme high-temperature events and heatwaves in 2010 (a); 2013 (b); 2015 (c) 
and 2018 (d). Grey dots indicate stations with no recorded extremes (Note: no data available for Taiwan province).
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For the purposes of this study, areas where the planting ratio was 
greater than 0 were selected as study areas and a crop growth 
model (Decision Support System for Agrotechnology Transfer, 
DSSAT-Wheat/Maize) was used to predict China's wheat and 
maize phenology under multiple scenarios (RCP 2.6, RCP 4.5 and 
RCP 8.5) through the 2030s (2011-2040). The simulation accuracy 
of the validated DSSAT-Wheat/Maize model is better than 90%. 
To assess future phenological changes of wheat and maize under 
the no-adaptation scenario, field management was kept at the same 
level as in the baseline period. This study aimed to obtain the 

average values of five atmospheric circulation models by scenario 
to generate climatic conditions under corresponding climate 
change scenarios (RCP 2.6, RCP 4.5 and RCP 8.5). Additionally, 
in order to make the prediction less uncertain, the kernel density 
estimation method (using Gaussian kernel function) was chosen 
to estimate the probability density and interval of phenological 
changes. Furthermore, since the influence of CO2 concentration 
was also considered, it was necessary to set the specific value 
of CO2 concentration by target period and scenario during the 
simulation process.

Predicting the impacts of 
climate change on the phenology of China's main crops

The impact of climate change on food security is a matter of 
wide concern. Climate change not only leads to altered crop 
phenology, but also further affects crop yields and threatens 
socioeconomic stability through its impact on agricultural 
production and related industries (Liu et al.,  2018a). This impact 
is likely to continue into the future. Therefore, forecasting 
changes in the phenology of main crops under future scenarios 

is instrumental in developing appropriate adaptation measures 
and ensuring regional food security (Liu et al.,  2018b). This 
study presents near-term projections on the spatial distribution 
of the phenology of China's main crops with a validated crop 
model, refined by multi-model and multi-scenario probabilistic 
predictions to reduce the uncertainty in climate change 
assessments.

◎ Data on climate change scenarios (RCP 2.6, RCP 4.5 and 
RCP 8.5) obtained from the Inter-Sectoral Impact Model 
Intercomparison Project.

◎ Experimental data (crop growth and field management 
records) and meteorological data (daily minimum temperatures, 
daily maximum temperatures, total daily precipitation and 

sunshine hours) captured and provided by the agrometeorological 
observatories of the China Meteorological Administration for 
model validations.

◎ Soil data obtained from the China Soil Database and 
experiments of agrometeorological observatories.

Background

Data used

Method

Projections of changed phenology of China's main crops through the 2030s (2011-2040) put 
the probability of early maturation of wheat and maize at 90.4%-91.2% and 62.9%-64.5% 
respectively. Without appropriate interventions, climate change will lead to forward shifts in 
the phenology of these crops and shortened cycles of growth, with negative implications for 
wheat and maize yields.

Highlights

13.2 Integrate climate change measures into national policies, strategies and planning.Target: 
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Figure 5-3. Spatial distribution and changes of wheat (a, c, e, g) and maize (b, d, f, h) maturation in China under climate change 
scenarios

Results and analysis
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The spatial distribution of wheat and maize maturation, and 
changes thereto, in the 2030s are shown in Figure 5-3. Compared 
to the baseline period of 1981-2010, over 90% of the areas show 
forward shifts in wheat phenology through the 2030s under all 
scenarios. The greatest forward shifts in wheat phenology are 
predicted for those areas in Qinghai and Tibet where spring and 
winter wheat is grown, while the areas with delayed phenology 
are concentrated in winter and spring wheat areas of Xinjiang 
and winter wheat areas of South China. Compared to the baseline 
period, the flowering period (anthesis) of maize is brought 
forward under most scenarios, and early anthesis is predicted for 
98.0% of the regions under the RCP 2.6 scenario, most notably 
in the southwest mountainous and hilly maize-growing regions. 
Unlike anthesis, there are substantial differences in the changes 
of maize maturation from region to region, with the greatest 
forward shift in the maturation of maize predicted under the RCP 

8.5 scenario. As the latitude decreases, the wheat anthesis and 
maturation periods change from earlier than the baseline to later 
than the baseline, which is the most obvious under the RCP 8.5 
scenario. In contrast to wheat, delayed anthesis and maturation 
of maize tend to be concentrated at high latitudes.

In the 2030s, the probabilities of early anthesis and early 
maturation of wheat are 88.9%-89.1% and 90.4%-91.2% 
respectively, and the probabilities of early anthesis and maturation 
of maize are 97.2%-98.0% and 62.9%-64.5% respectively. Under 
any of the scenarios, the probability of early anthesis of maize 
is greater than that of wheat, while the probability of early 
maturation of maize is less than that of wheat. Under the RCP 
2.6, RCP 4.5 and RCP 8.5 scenarios, the probabilities of early 
anthesis for wheat and maize decrease progressively. In the case 
of RCP 2.6, the probability of early anthesis of maize is as high 
as 98.0%.

Uncertainties abound in the projections of the impacts of climate 
change. Although uncertainties associated with model output 
and emission scenarios were factored into the ensemble-based 
predictions and crop modeling was validated by area to the 
greatest extent possible, to make the simulation more accurate, 
a degree of uncertainty remains in the simulation of biophysical 
processes of the crops.

Future climate change is likely to aggravate the fluctuations in 
China's wheat and maize production, hence the need to take 
adaptation measures as a matter of urgency to ensure food 

security. Improving crop management is an effective way to 
boosting the resilience and adaptive capacity of agriculture 
against climate change. Measures such as adjustments to sowing 
dates, fertilization and irrigation can mitigate the adverse impacts 
of climate change. Transforming the patterns of photosynthesis 
of crops through the use of improved crop varieties or breeding 
new varieties that are more heat tolerant and require more heat is 
also an important strategy to improve the resilience and adaptive 
capacity of agriculture.

Outlook

This chapter presented case studies in respect to two targets 
under SDG 13:

◎ In terms of climate change-related hazards and natural 
disasters, an analysis of the spatial distribution of extreme high-
temperature events and heatwaves points to an upward trend in 
extreme high-temperature events and heatwaves in China since 
the late 1990s;

◎ In terms of climate change response, an assessment of the 
possible impact of climate change on the phenology and yields 
of China's main crops points to the high probability of early 
anthesis of wheat and maize.

This chapter is an expansion of, and improvement on, spatial 
information based on the existing indicators under SDG 13. New 
datasets were generated by using the Big Earth Data platform, to 
provide information on spatial distribution for SDG 13-mandated 
response to climate change-related hazards and natural disasters 
and other impacts of climate change, so that the competent 
government agencies and institutions can better understand the 
problems posed by climate change and be better positioned to 
respond to climate change and minimize climate change-related 
losses.

Summary
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Big Earth Data in Support of the Sustainable Development Goals (2020)

The ocean, which covers 71% of Earth's surface, is one of our 
planet's three ecosystems, and a balanced marine ecosystem is 
vital to the survival and sustainable development of humankind. 
In 2015, the need to "conserve and sustainably use the oceans, 
seas and marine resources for sustainable development" was 
written into the 2030 Agenda for Sustainable Development of 
the United Nations, and has become one of the top priorities on 
the international agenda. In September 2017, in the margins of 
the 9th BRICS Summit, a special discussion was held on the 
"blue economy"; in November 2018, the 1st Global Conference 
on Sustainable Blue Economy adopted the Nairobi Statement of 
Intent on Advancing the Global Sustainable Blue Economy .

The Chinese Government is strongly committed to the United 
Nations agenda on the sustainable development of oceans 
and seas. Since 2015, guided by the national strategic goal — 
"Accelerate the transformation of China into a maritime power 
through integrated development of land and seas under unified 
planning", China's endeavors in the maritime sector have been 
developing by leaps and bounds, scoring many successes in, 
inter alia, protecting oceans and seas and promoting economic 
growth. Such notions as building a "maritime community with a 

shared future" and "Blue Partnership" are helping to put fairness 
and reason at the center of the global governance system. 
However, the sustainable development of oceans and seas in the 
case of China is not without its fair share of challenges posed by 
a huge demand for marine resources thanks to high population 
density in coastal China and the country's rapid economic 
growth.

The vast marine ecological environment is perpetually in a 
state of flux. One of the constraints that hampers the objective 
assessment of SDG targets related to oceans and seas and 
science-informed policy-making is the lack of monitoring data. 
Big Earth Data lends itself to macroscale dynamic monitoring 
and provides an important means of data acquisition for the 
evaluation of sustainable development of the oceans and seas. 
This report focuses on two SDG targets, namely, preventing 
and significantly reducing marine pollution (SDG 14.1) and 
building resilience against disasters and protecting marine and 
coastal ecosystems (SDG 14.2). It presents new big data-enabled 
solutions to provide data and information support for identifying 
critical issues related to the sustainable development of China's 
oceans and seas.

Background
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Table 6-1 Cases and Their Main Contributions

Target Case Contributions

14.1 By 2025, prevent and significantly 
reduce marine pollution of all kinds, in 
particular from land-based activities, 
including marine debris and nutrient 
pollution

Analysis of the 
distribution and variation 
of marine debris and 
microplastics in China's 
coastal waters

Data product: datasets on the distribution of marine debris 
and microplastics in China's coastal waters
Support to policy-making: informing policy-making with 
the state, by-region distribution and patterns of change of 
pollution by marine debris and microplastics in China's coastal 
waters for the prevention and control of marine debris and 
microplastics in typical areas

14.2 By 2020, sustainably manage and 
protect marine and coastal ecosystems 
to avoid significant adverse impacts, 
including by strengthening their 
resilience, and take action for their 
restoration in order to achieve healthy 
and productive oceans

Ecosystem health 
assessment for typical 
bays in coastal China

Data product: datasets of ecosystem elements in typical bays, 
i.e. Jiaozhou Bay, Daya Bay and Sishili Bay
Method: health assessment based on marine ecosystem 
structures and service functions
Support to policy-making: informing policy-making on 
how environmental factors in China's typical coastal bays 
contribute to changes in the key elements of ecosystems, to 
keep the protection of coastal ecosystems anchored in science

Monitoring changes in 
raft culture in China's 
coastal waters

Data product: datasets from monitoring of raft culture in key 
coastal provinces of China
Method: deep learning-enabled AI extraction of marine raft 
culture data

Under a dual mandate of reducing marine pollution and 
protecting marine ecosystems, Big Earth Data has been used to 
monitor and evaluate progress toward the SDG 14 targets in the 
coastal waters and typical areas of China. Three case studies are 

presented below to share with the rest of the world China's data 
products, methodological models, and support to policy-making 
related to the monitoring of SDG 14 indicators. The names of 
the cases and their main contributions are shown in Table 6-1.

Main Contributions
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Case Study

This study aims to map the current state of pollution by marine 
debris and microplastics in China's coastal waters and the 
distribution of same by region by consolidating the available 
mapping data, data from marine bulletins and data from 

academic literature on marine debris and microplastics in the 
said waters, with an analysis of the trends of variation in respect 
of these pollutants against historical data.

Analysis of the distribution and variation 
of marine debris and microplastics in China's coastal waters

In recent years, marine debris and microplastics, being a major 
cause of environmental woes, have gained greater attention as 
a major concern to various constituencies. Today, work in this 
area is moving beyond research to tangible actions of pollution 
control and joint global endeavors. Reducing plastic debris 
is one of the key indicators of marine pollution control in the 

framework of UN 2030 Agenda for Sustainable Development. 
However, it remains a Tier II indicator to this day because of a 
dearth of data on this phenomenon at the international level. The 
competent authorities and research institutions in China have 
been working hard on monitoring and analysis, delivering a 
range of outcomes.

◎ Data on marine microplastics used in this study primarily 
from monitoring of microplastics in China's coastal waters by 
the Ministry of Natural Resources and the Bulletin on the State 
of China's Marine Ecological Environment 2019 published by 
the Ministry of Ecology and Environment.

◎ Marine floating debris data primarily from the Bulletin on the 
State of China's Marine Ecological Environment 2018 published 
by the Ministry of Ecology and Environment and relevant papers 
published in international journals.

Background

Data used

Method

An analysis of the distribution and variation of floating debris in 22 typical coastal areas of 
China showed that the abundance of floating debris in China's coastal waters in 2018 was 
approximately 25% below the 2010 to 2014 average.

Microplastics shape found in China's coastal waters in 2019 were mainly fibrous, linear, 
spherical, and fragmented and the distribution of microplastics varied from region to region, 
with the average abundance of microplastics at low to medium levels.

Highlights

14.1 By 2025, prevent and significantly reduce marine pollution of all kinds, in particular from land-based activities, 
including marine debris and nutrient pollution.

Target: 
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Reducing marine debris and microplastics pollution is one 
of the priorities on the agenda of global ocean governance, 
which requires all countries to work together. The current gaps 
in the scientific knowledge of marine microplastics pollution 
make it necessary to better analyze the impacts of marine 
microplastics on environmental pollution in the future. While 
pollution by marine debris and microplastics in China's coastal 
waters has been declining, much remains to be done to tackle 

marine debris and microplastics in the marine environment 
with more conclusive solutions. Dynamic monitoring of plastic 
waste and microplastics in coastal waters should be continued 
and a database built, along with studies on the distribution of 
microplastics in the oceanic and polar environments, to provide 
a scientific basis for the management of marine debris and 
microplastics at the global level.

1) Distribution and change of floating debris in China's 
coastal waters

According to the monitoring data, the abundance of floating 
debris in China's coastal waters has been on a decline since 2015. 
The abundance of floating debris in 2018 was approximately 
25% lower than the average of 3 207 pieces/km2 recorded for the 
period 2010-2014 (Zhou et al., 2016).

In 2018, most of the floating debris in China's coastal waters was 
plastic waste (88.7%), followed by wood (4.4%) (Fig. 6-1). The 
plastic waste identified was mostly polystyrene foam, plastic 
bags and plastic bottles.

A study of the distribution of floating debris in 22 typical coastal 
areas of China identified significant variations in the abundance 
of floating debris in different areas (Fig. 6-2), the highest 
abundance found in: Xinghai Bay, Dalian, Liaoning province; 
Yuetou Bay, Huangcheng, Xiangshan, Zhejiang province; 
Dacheng Bay, Chaozhou, Guangdong province; and Guanhai 
Bay, Zhanjiang, Guangdong province.

2) Distribution patterns of microplastics in China's coastal 
waters

A study of the distribution of microplastics in China's coastal 
waters in 2019 in terms of shape, color, size and polymer type 
finds: (a) that most of the microplastics was in the form of fibers, 
threads, pellets/granules and fragments; (b) that the highest 
proportion of microplastics found was 1.0-2.0 mm in size; 
(c) that the microplastics came in eight colors, namely, white, 
black, red, yellow, blue, green, purple and transparent, with 
a different mix of colors in each of the sample areas; and (d) 
that the predominant types of microplastics were Polyethylene 
Terephthalate (PET), Polystyrene (PS), Polyethylene (PE) and 
Rayon.

Monitoring of the abundance of microplastics in China's coastal 
waters in 2019 showed that the abundance of microplastics 
floating on the surface in the section of the Bohai Sea monitored 
was 0.82 items/m3 and in the section of the East China Sea 
monitored, 0.25 items/m3, with the average abundance of 
microplastics at low to medium levels.

Outlook

Results and analysis
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Linked to Target 14.2, this study aims to refine the methodology 
of assessment in light of the characteristics of bay ecosystems, 
analyze the current state and variation trends of different 
ecosystem elements, and adjust and select parameters against the 

SDG indicators; conduct machine learning-enabled data mining 
to introduce additional threshold criteria or improve existing 
ones for assessment; and develop a report card assessment model 
in support of policy-making on coastal ecosystem management.

Ecosystem health assessment for typical bays in coastal China

Industry, agriculture, aquaculture, tourism and other human 
activities bring compounding pressures on global coastal 
ecosystems. According to SDG Target 14.2 of the UN 2030 
Agenda for Sustainable Development, it is time to "sustainably 
manage and protect marine and coastal ecosystems" and "achieve 
healthy…oceans". Marine ecosystem health assessments, which 

are instrumental in ocean governance and the development and 
use of oceans and seas, provide an important scientific basis 
for the protection of marine ecosystems and environment and 
ecological management, and help us move forward on a range 
of issues related to the marine environment and resources 
protection (Rapport, 1995; Pollard, 1998).

◎ Datasets on hydrological, chemical, planktonic, benthic, 
microbiological and other environmental/ecological factors in 
the typical bays available on the National Ecosystem Research 

Network of China (CERN) for the period of January 2007 to 
December 2019.

Background

Data used

Method

The ecosystems of Jiaozhou Bay, Sishili Bay and Daya Bay are in relatively good health at 
present. For more than a decade from 2007 to 2019, the overall health of the Jiaozhou Bay 
ecosystem was stable with some upticks, while that of Sishili Bay and Daya Bay remained stable. 
The health condition of Daya Bay showed slight improvement from 2016 onward.

Highlights

For the purposes of this study, Sishili Bay, Jiaozhou Bay and 
Daya Bay were chosen as typical bays, representing different 
ecological environments and human activities: Sishili Bay is 
located in the northern part of the Yellow Sea, and the bay itself 
and its surrounding areas are home to agriculture, industry, 
aquaculture, port services and so on, with a high incidence of 
red tides in the bay; Jiaozhou Bay is located in the southern part 

of the Yellow Sea and is subjected to a range of anthropogenic 
stressors, including port services, aquaculture and a long bridge 
arching over the bay; Daya Bay is located in the South China 
Sea, home to the Daya Bay Nuclear Power Base with six units 
in operation. Joint health assessments were used to provide 
scientific information for the protection and management of 
different marine areas.

Results and analysis

14.2 By 2020, sustainably manage and protect marine and coastal ecosystems to avoid significant adverse impacts, 
including by strengthening their resilience, and take action for their restoration in order to achieve healthy and 
productive oceans.

Target: 
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Figure 6-4. Assessment results of key elements of typical bays (Grades and levels as shown in Fig. 6-3)
(a) Bacillariophyta Pyrrophyta ratio (BP ratio); (b) Chlorophyll a (Chl a)

1) A general mapping of the health of typical bay ecosystems

The findings indicate that the ecosystems in Sishili Bay, Jiaozhou 
Bay and Daya Bay are in good health at present. From 2007 to 
2018, the health of the Jiaozhou Bay ecosystem was stable with 

moderate improvement. The overall ecosystem health of Sishili 
Bay from 2015 to 2019 and Daya Bay from 2013 to 2018 was 
stable. Starting in 2016, there was a moderate improvement in 
the ecosystem health of Daya Bay. The assessment findings are 

Figure 6-3. Ecosystem health mapping results in selected bays 2007-2019
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Figure 6-5. Contributions of environmental factors to abundance of Bacillariophyta, a dominant species of phytoplankton
(a) Jiaozhou Bay; (b) Sishili Bay; (c) Daya Bay

Using the coastal ecosystem health assessment approach, this 
study involves a number of assessments jointly conducted in the 
three typical coastal bays of China, analyzing the current status 
and variation trends of these coastal ecosystems, comparing 
their key ecosystem health elements and investigating major 
contributing factors to changes in the state of marine ecosystems 

of these bays. The expert diagnostic models will be further 
refined to make the diagnosis more objective by analyzing the 
stress factors affecting ecosystem health. Customized decision 
support systems that include analytical tools catering to different 
users and use scenarios will also be developed, in support of 
coastal environment protection and management.

Outlook

shown in Figure 6-3.

2) Assessment of individual key elements of typical bay 
ecosystems

The sea surface Chlorophyll a (Chl a) concentration and the 
ratio between the Bacillariophyta and Pyrrophyta abundance (BP 
ratio) can respectively represent the primary productivity level 
and phytoplankton community structure in a given area to some 
extent and are therefore important indicators of its ecosystem 
health. We assessed the health of the three typical bays by 
measuring those two values and the results are as follows: The 
health of the phytoplankton community structure in Sishili 
Bay, as indicated by the BP ratio, showed a trend of sustained 
improvement and its primary productivity remained good and 
stable. The phytoplankton community structure of Daya Bay 
improved as from 2014, but its primary productivity was rated 
the lowest among the three bays, which might be attributable to 
its nutrient level. Jiaozhou Bay was rated slightly lower than the 
other two in phytoplankton community structure health while its 
primary productivity health remained good. See Figure 6-4 for 
details.

3) An analysis of contribution of environmental factors to 
changes in key elements of ecosystems

Machine learning was used to study how key environmental 
factors contributed to the variations in Bacillariophyta abundance 
in the bays (Fig. 6-5). Higher contribution indicates a greater 
role in changing Bacillariophyta abundance. The results indicate 
that the greatest contribution to Bacillariophyta abundance 
variations came from nutrients in Jiaozhou Bay and Sishili Bay 
while water temperature was the number one contributing factor 
to the Bacillariophyta abundance variations in Daya Bay. They 
are consistent with the characteristics of the three bays studied: 
In both Jiaozhou Bay and Sishili Bay, the ecological elements 
were closely correlated with nutrients because of higher 
concentration of nutrients as a result of significant impacts from 
human activities such as industry, agriculture and aquaculture. 
On the other hand, the water temperature variations in Daya Bay 
contributed the most to changes in Bacillariophyta abundance, 
probably as a direct consequence of the heated water discharged 
from the nuclear power plants located around Daya Bay.
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For the purposes of this study, an AI-enabled remote sensing 
approach that supports large-area, complex-scenario monitoring 
of marine raft culture farms was used. A large number of 
representative samples were selected along the south-north 
axis, to ensure the applicability of models obtained through 

machine learning to different scenarios. In view of the unique 
characteristics of remotely sensed imagery of raft culture farms, 
multi-core convolutional layers, additional texture features and 
other enhancements were used to improve the deep learning 
neural network.

Monitoring changes in raft culture in China's coastal waters

Marine raft culture is an important form of marine aquaculture. 
It has three subsets, namely, floating raft culture, cage culture 
and longline culture. Compared to nearshore pond and mudflat 
aquaculture, raft culture is more difficult to manage because 
it is further away from the coast. Because raft culture tends 
to be scattered around a large area, traditional monitoring 
methods, such as onsite measurement using navigation and 

positioning systems, is labor-intensive, time-consuming and 
unproductive when accurate results of a large area are required. 
As an important part of Big Earth Data, satellite imagery can 
help overcome the inadequacies of field survey and is a reliable, 
state-of-the-art technology for safe and effective multi-temporal 
dynamic monitoring of marine raft culture across large areas.

◎ Gaofen-3 and Sentinel-1/2 satellite imagery of China's coastal 
waters for 2017, 2019 and 2020, of which the 2017 and 2019 
data were for the period April to September of each year and the 
2020 data, from April to June.

◎ Validated field survey data of marine raft culture for 2018.

◎ Policy data, including data on red line planning for the 
protection of marine ecosystems.

Background

Data used

Method

Dynamic monitoring datasets (at 30 m spatial resolution) of the distribution of raft culture in 
key coastal provinces of China in 2017, 2019 and 2020 are generated for the first time, aided by 
deep learning.

Findings indicate that the area of marine raft culture in China is still in the growth phase, while 
the area of raft culture within the boundaries of the coastal ecological conservation red line has 
remained stable on the whole.

Highlights

In this study, Jiangsu province and Fujian province were chosen 
to be monitored for changes in their raft culture farms (Fig. 
6-6 and Fig. 6-7). It is found that most of raft culture farms are 

located close to shore. From 2017 to 2020, the total area of raft 
culture in the two provinces was in the growth phase, with a 
slowdown in the rate of growth.

Results and analysis

14.2 By 2020, sustainably manage and protect marine and coastal ecosystems to avoid significant adverse impacts, 
including by strengthening their resilience, and take action for their restoration in order to achieve healthy and 
productive oceans.

Target: 
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Figure 6-6. Observed distribution, and change thereto, of raft culture in Jiangsu province

Furthermore, a change analysis in the context of the ecological 
protection red line finds little change to most of the marine 

aquaculture within the boundaries of the red line after the red 
line came into force.
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Figure 6-7. Observed distribution, and change thereto, of raft culture in Fujian province

Marine aquaculture is not only an important means whereby 
marine resources are used for human purposes, but also an 
important factor that has a bearing on the health of marine 
ecosystems. While large-scale, whole-area monitoring using 
traditional methodology for aquaculture survey is very 
challenging, the increasing availability of satellite remote 
sensing data and other Big Earth Data provides a new way of 

overcoming this problem. Going forward, we shall extend the 
application of Big Earth Data to the relevant domains, determine 
the optimal remote sensing time slots for different raft culture 
farms in various marine areas, and improve the accuracy and 
timeliness of information obtained from marine aquaculture 
monitoring in terms of type, scale, period and any change in the 
aquaculture farm environment.

Outlook
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This chapter focuses on two SDG 14 targets pertaining to 
marine pollution reduction and marine ecosystem protection and 
presents three case studies, namely, distribution of marine debris 
and microplastics in China's coastal waters, the health of typical 
marine ecosystems and changes in nearshore raft culture, where 
dynamic and quantitative monitoring and assessment are enabled 
against the said targets at two levels, i.e. national (China) and 
local (typical areas), to provide effective support for evaluating 
the sustainable development of the marine environment against 
the relevant targets with data products, methodological models 

and support to policy-making.

Going forward, we shall further strengthen the application of 
spaceborne and airborne remote sensing data, AI and other 
technologies in the monitoring and analysis of SDG 14 
indicators, in the hopes of extending the study of relevant 
indicators from China's coastal waters to distant waters on a 
larger scale and in greater depth, to develop a more complete 
system of data, techniques and methods for monitoring and 
evaluating the sustainable development of marine ecosystems.

Summary
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Big Earth Data in Support of the Sustainable Development Goals (2020)

The dynamic, spatially disaggregated and quantitative 
monitoring and evaluation of multiple SDG 15 indicators at 
three levels—global, national (China) and local (typical areas) 
provide solid support for the sustainable development of life on 
land in the form of data products, methodological models and 
support to policy-making. For SDG 15.1.1, we achieved timely 
updating of global forest cover mapping products at 30 m spatial 
resolution (2019) and developed an integrated spatial-temporal-
spectral feature extraction model for identifying forest types. 
For SDG 15.1.2, we localized the three global conditions for 

biodiversity conservation in China and made recommendations 
for biodiversity conservation and restoration. For SDG 15.3.1, 
we took a science-based approach to track and assess Land 
Degradation Neutrality (LDN) in China and analyzed its 
contribution to global LDN, along with an in-depth analysis of 
the dynamics and drivers of desertification and soil erosion in 
typical areas of China. For SDG 15.5.1, we analyzed in depth the 
risk factors facing flora diversity in China with recommendations 
for conservation strategies (Table 7-1).

Main Contributions

SDG 15 states, "Protect, restore and promote sustainable 
use of terrestrial ecosystems, sustainably manage forests, 
combat desertification, halt and reverse land degradation, halt 
biodiversity loss." Healthy ecosystems protect the planet and 
sustain livelihoods. Forests, wetlands, mountains and drylands, 
in particular, provide a wide range of environmental goods and 
services - clean air and water, biodiversity conservation and 
climate change mitigation. However, nature is under increasing 
stress and human activities have transformed nearly 75% of 
the Earth's surface, while biodiversity is being lost, with about 
1 million species of fauna and flora on the brink of extinction 
and 1 200×104 hm2 of land lost to drought and desertification 
each year, leading to the loss of valuable economic assets and 
livelihood opportunities (IPBES, 2019).

The Inter-Agency and Expert Group on SDG Indicators (IAEG-
SDGs) has developed an SDG indicator tier classification system 
based on the maturity of monitoring methodologies and the 
availability of monitoring data at the global level. According 

to the IAEG-SDGs 2020 report, 10 of the 14 indicators under 
SDG 15 are classified as Tier I and four as Tier II ; with respect 
to the 10 Tier I indicators, about half of the countries are unable 
to provide data on a regular basis, an issue that is particularly 
pronounced in underdeveloped countries. 

This report focuses on three aspects, namely ecological 
conservation, land degradation and biodiversity to monitor 
progress toward SDG 15 against four indicators: forest area 
as a proportion of total land area (SDG 15.1.1), proportion of 
biodiversity conservation sites (SDG 15.1.2), degraded land as 
a proportion of total land area (SDG 15.3.1) and the Red List 
Index (SDG 15.5.1), by fully leveraging Big Earth Data. The 
aim is to provide data products, methodological models and 
support to policy-making for UN agencies and other countries 
in the monitoring and implementation of SDG 15 indicators, 
thus contributing Chinese solutions to the attainment of SDG 15 
targets.

Background
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Table 7-1 Cases and Their Main Contributions

Indicator Tier Case Contributions

15.1.1 Forest area as a 
proportion of total land 
area

Tier I

Global/regional forest 
cover (2019)

Data product: global forest cover map at 30 m spatial 
resolution for 2019
Method: machine learning-enabled forest classification on 
global scale
Support to policy-making: informing forest cover status at 
regional and global scales 

Spatiotemporal 
distribution of forest 
types in China's Yangtze 
River basin

Data product: datasets on distribution of forest types in the 
Yangtze River basin for 2018 (at 10 m resolution)
Method: a method for time series remotely sensed image 
synthesis based on multi-rules and an integrated spatial-
temporal-spectral framework for forest type feature extraction

15.1.2 Proportion of 
important sites for 
terrestrial and freshwater 
biodiversity that are 
covered by protected 
areas, by ecosystem type

Tier I

Applying three global 
conditions framework 
to the conservation 
and sustainable use of 
biodiversity in China

Data product: datasets on 3Cs for the conservation and 
sustainable use of biodiversity in China
Support to policy-making: localizing the three global 
conditions and recommending strategies for ecosystem 
conservation and restoration in the context of the National 
Projects for the Conservation and Restoration of Major 
Ecosystems

15.3.1 Proportion of land 
that is degraded over total 
land area

Tier I

China's LDN progress 
tracking and its 
contribution to global 
LDN

Data product:  datasets on global land degradation/ 
improvement 
Support to policy-making: tracking and assessing China's 
LDN with an objective analysis of China's contribution to 
global LDN based on the IAEG-SDGs indicator system and 
globally shared data

Dynamics between 
large-scale greening 
and soil and water 
conservation on the 
Loess Plateau and 
sedimentation of the 
Yellow River

Method: a model for quantifying the effect of vegetation 
cover on soil erosion control
Support to policy-making: identifying spatial variations in 
the effectiveness of soil conservation on the Loess Plateau and 
informing policy-making on soil erosion control

Processes of aeolian 
desertification in the 
semi-arid region and its 
peripheries in northern 
China and review of 
control outcomes

Data product: long time series data on the dynamics of 
aeolian desertification in semi-arid and surrounding areas of 
northern China (1975-2015)
Support to policy-making: assessing the processes and 
drivers of aeolian desertification in semi-arid and surrounding 
areas of northern China over last four decades, to support 
desertification control

15.5.1 Red List Index Tier I
China's plant diversity: 
risks and conservation 
strategies

Data product: datasets on risk distribution and conservation 
efforts of China's plant diversity
Method: a method for identifying the threats and stressors to 
biodiversity, developed and refined
Support to policy-making: identifying gaps in China's flora 
diversity conservation and recommending a combination of 
proactive conservation strategies and restoration solutions to 
protect the habitats of species 
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Case Study

Forest referred to in this case is as defined in the Global Forest 
Resources Assessment (2020), namely, "land spanning more 
than 0.5 hectares with trees higher than 5 meters and a canopy 
cover of more than 10 percent, or trees able to reach these 
thresholds in situ . It does not include land that is predominantly 
under agricultural or urban land use" (FAO, 2018b). Enhanced 
by machine learning, big data analysis and other state-of-the-

art technologies, rapid monitoring of global forest cover with 
30 m resolution was conducted based on long-time-series, 
multi-source satellite remote sensing data. Compared with 
similar maps that are currently available both in and outside 
of China, this product is more up to date, has higher temporal 
and spatial resolution and is more complete in its spatial 
coverage.

Global/regional forest cover (2019)

Forests are vital to human development. "Forests and trees 
make vital contributions to both people and the planet, 
bolstering livelihoods, providing clean air and water, conserving 
biodiversity and responding to climate change." (FAO, 
2018a). In recent years, an increasing number of countries, 
organizations and companies have been involved in remote 
sensing surveys of global forest resources, such as the Global 
Forest Cover Change and Global Forest Watch. Since 2010, 
remote sensing data have been used extensively in the Global 
Forest Resources Assessments  (FRAs), released by the Food 

and Agriculture Organization of the United Nations (FAO) 
every five to ten years, to analyze the development of forests at 
regional and global levels and the possible impacts of changes 
in demographic, economic, institutional, technological and other 
external factors on forests (FAO, 2006, 2010, 2016). Rapid and 
accurate access to global forest cover information and accurate 
knowledge of the status and changes in forest resources are 
instrumental in enhancing forest management and utilization 
in response to global changes and achieving sustainable forest 
development.

◎ Global Landsat series imagery with 30 m spatial resolution acquired from 1 January 2019 to 31 December 2019.

Background

Data used

Method

A remotely sensed global forest cover map for 2019 is independently produced at a spatial 
resolution of 30 m and an overall accuracy of 86.45%, providing valuable spatial data and 
effective decision-making support for the assessment of 2030 Agenda implementation progress.

In 2019, there were 36.92x108 hm2 of forests worldwide, covering approximately 24.78% of the 
Earth's total land area. Of all the continents, South America had the highest ratio of forest area 
to total land area (47.45%) and Oceania, the lowest (12.80%).

Highlights

15.1 By 2020, ensure the conservation, restoration and sustainable use of terrestrial and inland freshwater ecosystems 
and their services, in particular forests, wetlands, mountains and drylands, in line with obligations under international 
agreements.

Target: 
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Figure 7-2. Distribution of forests by climate zone and continent, 2019 
(a) By climate zone; (b) By continent

Table 7-2 Forest Cover by Climate Zone, 2019

Climate zones Forest area(103 hm2) % of global forest area % of land area

Tropical 1 755 987.04 47.56 21.91

Subtropical 421 115.39 11.40 16.43

Temperate 602 494.36 16.32 20.49

Arctic 912 837.24 24.72 47.27

Total 3 692 434.03 100.00 24.78

As at the end of 2019, the total area of global forests stood at 
36.92×108 hm2, covering approximately 24.78% of the world's 
total land area (149×108 hm2). The spatial distribution of 
global forests is as shown in Figure 7-1. Forests are generally 
distributed in regions at specific latitudes, mostly in the tropical 
regions of South America, Central Africa and Southeast Asia, in 
the boreal regions of Russia and Canada, and along the Pacific 
coasts and Atlantic coasts.

The world is divided into four climate zones: tropical, 
subtropical, temperate and arctic. Forest distribution is not 
even across different zones (Table 7-2 and Fig. 7-2). The 
tropical zone has the largest forest area, accounting for nearly 

half of the world's total forest area, and 21.91% of the zone 
is covered by forests, ranking second in the world. This is 
mainly because the most important forest type, rainforest, is 
found in this zone. Although the forest area in the arctic zone 
accounts for approximately a quarter of the world's total only, 
it has the highest forest cover at 47.27%, largely because of 
the wide distribution of taiga along the intensely warming mid 
and high latitudes of the northern hemisphere and concentrated 
in northern Russia and Canada. Forest area and its percentage 
of land area in temperate and subtropical zones rank third and 
fourth respectively.

Results and analysis

In terms of distribution by continent, forest cover varies 
significantly among the six continents (Antarctica excluded) 
(Table 7-3 and Fig. 7-2). Asia has the largest land area and 
the largest forest area, ranking fourth globally in forest cover. 
South America, although second in the world in terms of forest 
area, has the highest forest cover at 47.45% and its Amazon 

basin boasts the world's most extensive and contiguous tropical 
rainforests. Europe and North America have the second and third 
highest forest cover respectively. Oceania has the smallest land 
area, as well as the smallest forest area and forest cover among 
the six continents.
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Table 7-3 Forest Cover by Continent, 2019

Continent Forest area（103 hm2） % of global forest area % of land area

Africa 454 041.04 12.30 15.02

Asia 1 147 751.04 31.08 25.92

Europe 379 596.54 10.28 38.42

North America 745 487.64 20.19 31.78

Oceania 109 547.50 2.97 12.80

South America 856 010.27 23.18 47.45

Total 3 692 434.03 100.00 24.78

Rapid development of global forest cover products is enabled 
on the basis of long-time-series, multi-source satellite remote 
sensing data by leveraging machine learning and big data 
analysis, to monitor implementation against SDG 15.1.1, "forest 
area as a proportion of total land area", and to compare and 
analyze the patterns of spatial distribution of forest cover by 
climate zone and by continent.

Using Big Earth Data, we will be able to release and update 
remotely sensed global forest cover products in real time. 
These products can help underresourced and underdeveloped 
countries and regions monitor changes in their forests, enhance 
conservation awareness and build greater forest management 
capacity, to make sustainable development of global forest 
resources a reality.

Outlook
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In view of the demand that mapping of cloud cover and large-
scale land cover has on high-quality remotely sensed images, 
a multi-rule multi-spectral time-series remote sensing image 
composition method was proposed in this case. Using the 

pixels of remotely sensed images covering the same area over 
the same time periods, high-quality cloudless remotely sensed 
images were composited for the area under study. Taking 
advantage of the high spatial resolution and higher spectral 

Spatiotemporal distribution 
of forest types in China's Yangtze River basin

Accurate acquisition of data on forest area is a prerequisite 
for Indicator 15.1.1-related assessment. Globally, data used to 
measure forest cover mainly comes from specialized agencies 
such as the Food and Agriculture Organization of the United 
Nations. According to the Global Forest Resources Assessment 
2015, forest loss is continuing worldwide (FAO, 2018a). Existing 
remote sensing data products for forest classification have some 
disadvantages, such as low spatiotemporal resolution and poor 
regional applicability. The Yangtze River basin spans three 
major economic zones in eastern, central and western China, and 
is the third largest river basin in the world, with a total area of 
1.80×106 km2 or 18.80% of China's total land area. The basin is 
primarily located in the subtropical evergreen broadleaved forest 

region, covering parts of the Qinghai–Tibet Plateau vegetation 
region. The Yangtze River basin has rich forest resources 
owing to its complex geological activities, climate change 
history and diverse topographic and environmental conditions. 
It is an important treasure-trove of forest resources for China. 
Socioeconomic development has brought into sharp relief the 
paradoxes between ecological needs and economic imperatives 
and between conservation and development along the Yangtze 
River economic belt. In this context, forest and other ecological 
resources in the Yangtze River basin are under threat. There is 
an urgent need to monitor forest type distribution in the Yangtze 
River basin and identify their spatiotemporal distribution 
patterns in the service of granular, sustainable management.

◎ Landsat time-series images at 30 m spatial resolution from 
1985 to 2018.

◎ Sentinel-2 time-series images at 10 m spatial resolution from 
2015 to 2019.

◎ A 30 m spatial resolution Digital Elevation Model of the 
Yangtze River basin.

◎ Yangtze River basin boundary data.

◎ Data from field surveys conducted in 2014, 2015 and 2018.

Background

Data used

Method

A remote sensing classification framework for identifying forest types is proposed, using multi-
rule time-series imagery composition and combining spatial-temporal-spectral features with 
machine learning algorithm.

A forest type distribution map in 2018 was produced covering Yangtze River basin in China with 
10 m spatial resolution and an overall accuracy of 83.25%.

Highlights

15.1 By 2020, ensure the conservation, restoration and sustainable use of terrestrial and inland freshwater ecosystems 
and their services, in particular forests, wetlands, mountains and drylands, in line with obligations under international 
agreements.

Target: 
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Figure 7-3. Remotely sensed spatial distribution of forests by type in the Yangtze River basin
(NOF=Non-Forest area; EBF=Evergreen Broadleaved Forest; DBF=Deciduous Broadleaved Forest; ENF=Evergreen Needle-
leaved Forest; DNF=Deciduous Needle-leaved Forest; MIF=Mixed Forest)

To the best of our knowledge, this was the first study to create 
a remotely sensed forest type classification product at 10 m 
spatial resolution for the Yangtze River basin in 2018. Compared 
with previous data products, this product has a higher spatial 
resolution and more diverse and in-depth information on forest 
types, which can provide data support for the sustainable 
management of forest resources in the Yangtze River basin.

Going forward, it is our intention to extend the proposed method 
for mapping forest types with remote sensing data to the rest 
of China and generate a nationwide by-type forest map for 
2018 at 10 m spatial resolution. Furthermore, we shall map 
forest subtypes within China against SDG 15.1.1, to inform the 
sustainable management of forest resources in China.

Outlook

The spatial distribution of forest types in the Yangtze River 
basin is shown in Figure 7-3. The survey by type indicates that 
forests in the Yangtze River basin are dominated by evergreen 
coniferous, mixed and evergreen broadleaved species. Evergreen 
conifers are concentrated around the upper reaches of the 
Yangtze and are common in such areas as Tongtian River, Yalong 
River and Jinsha River, accounting for approximately 15.76% 
of the total area; mixed forests are concentrated in the north–
central part of the Yangtze River basin, found mainly in the 
eastern Hengduan Mountains and north of Qinling Mountains, 
accounting for 14.15% of the total area; evergreen broadleaved 
forests are concentrated around the Wu River, Liu River and 

Gan River along the middle to lower reaches of the Yangtze, 
accounting for approximately 7.29% of the total area. Deciduous 
broadleaved and deciduous conifers are a minority.

The results were validated against field survey data, and the 
validation indicated that the overall classification accuracy was 
83.25%. The Producer's Accuracy (PA) ranged from 73.08% 
to 100%. The PA for deciduous needle-leaved forests was 
the highest, at 100%, with an omission error of 0. The User's 
Accuracy (UA) ranged from 56.59% to 94.50%. The UA for 
evergreen broadleaved forests was the highest, at 94.50%, 
indicating a minimal commission error.

Results and analysis

resolution of Sentinel-2 images and the long-time series Landsat 
data, spectral-spatial-temporal feature datasets for forest type 
classification were established (Cheng et al., 2019). Then, a 

forest type map at 10 m spatial resolution covering China's 
Yangtze River basin 2018 was acquired using machine learning 
algorithm based on cloud computing platform.
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Table 7-4 Data used in the case

Item Data source Spatial 
resolution

Global population distribution (2015); Rates of global 
demographic change (1990-2015) Socioeconomic Data and Applications Center 1 km

Global land use types (2015); Changes in global land cover 
(1993-2015) European Space Agency 300 m

Applying three global conditions framework 
to the conservation and sustainable use of biodiversity in China

SDG 15 emphasizes the importance of protecting, restoring 
and promoting the sustainable use of terrestrial ecosystems to 
the conservation of natural habitats and biodiversity (United 
Nations, 2015). Conservation actions are constrained by 
the socioeconomic status of different areas. Therefore, the 
development of tailored conservation policies is vital to more 
efficient biodiversity conservation efforts.

In the interest of conserving and sustainably using biodiversity, 
Locke et al.  (2019) proposed that land be divided into three 
conditions for biodiversity conservation and management. In 
their proposal, Three Global Conditions (3Cs) are identified for 

the world's land - Cities and Farms, Shared Landscapes, and 
Large Wild Areas - and different conservation and management 
strategies for each condition are proposed, thus creating a 
new framework for the differentiated conservation policies 
tailored to the realities of different regions. Based on the 3Cs 
framework, this study is to elaborate the criteria and processes 
of 3Cs classification in China and analyze the characteristics of 
3Cs by using the "pressure-state-response" biodiversity model. 
Policy recommendations for the spatial optimization of China's 
biodiversity conservation and management are to emanate from 
the findings of the study.

◎ This study uses a range of data on demographics, land cover, 
net primary productivity, soil organic carbon, distribution of 

higher plants and terrestrial vertebrates, boundaries of protected 
areas and key biodiversity areas (Table 7-4).

Background

Data used

Criteria and processes for the classification of the three conditions for the conservation and 
sustainable use of biodiversity in China are proposed.

The pressure-state-response indicators of biodiversity vary across the three conditions. 
Condition 1 (Cities and Farms) is under great pressure; Condition 2 (Shared Landscapes) is 
highly biodiverse; and Condition 3 (Large Wild Areas) is under intensified conservation. Based 
on the results of this study, a proposal is made to optimize the spatial allocation of biodiversity 
conservation efforts in China.

Highlights

15.1 By 2020, ensure the conservation, restoration and sustainable use of terrestrial and inland freshwater ecosystems 
and their services, in particular forests, wetlands, mountains and drylands, in line with obligations under international 
agreements.

Target: 
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Condition 1 (C1): Cities and Farms

Population density≥1 000/km2 OR percentage of agricultural and urban land > 50%

Condition 2 (C2): Shared Landscapes

Not C1 AND {percentage of agricultural and urban land > 0.5% OR Human Modification Index 
(Kennedy et al.,  2019) > 0.1}

Condition 3 (C3): Large Wild Areas

Identified as a wilderness patch larger than 10 km2 according to Cao et al.  (2019) AND 
percentage of agricultural and urban land ≤0.5% AND Human Modification Index≤0.1

Table 7-4 Data used in the case

Item Data source Spatial 
resolution

Net Primary Productivity (NPP) in China (2010) Resource and Environment Science and Data 
Center, CAS 1 km

Global forest cover (2010) Global Forest Watch 1 km

Global soil organic carbon stock ISRIC 1 km

Global biomass carbon stock CASEarth 3 km

Distribution of over 1 600 threatened endemic higher plant 
species in China CASEarth 300 m

Distribution of over 600 terrestrial mammal species in China CASEarth 10 km

Distribution of more than 1 200 bird species in China CASEarth 10 km

Protected areas in China CASEarth Shapefile

Key Biodiversity Areas (KBAs) World Database on KBAs Shapefile

China's land area is divided into 1 km × 1 km grid cells (excluding 
such water bodies as major inland lakes), each of which is 
assigned to one of the 3Cs against the following criteria. The 

distribution of indicators that reflect "pressure-state-response" 
of biodiversity in each condition is calculated separately. 
Population numbers are summed and other indicators averaged.

Method

C1, C2 and C3 account for 25.0%, 48.1% and 26.9% of China's 
land area respectively. C1 and C3 are clearly separated by the 
Hu Line (Fig. 7-4).

The distribution of pressure-state-response indicators varies 
across the three conditions. Among the 3Cs, C1 is under the 
highest pressure, home to 73.5% of China's population, which saw 

the highest growth rate between 1990 and 2015. During the 1993-
2015 period, 4.5% of natural habitats in C1 showed degradation, 
while some degree of restoration was observed in C2 and C3. 
Indicators of the state of biodiversity point to C2 as having the 
highest concentration of biodiversity, whereas more conservation 
efforts have been channeled into C3 than C1 and C2.

Results and analysis
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Figure 7-4. Distribution and proportions of 3Cs in China

The findings of this study indicate that, of the three conditions, 
C2 (Shared Landscapes) has the highest concentration 
of biodiversity in China; the pressure on biodiversity is 
concentrated in C1 (Cities and Farms); and conservation efforts 
are concentrated in C3 (Large Wild Areas). The following 
considerations are recommended for China's future strategies to 
conserve and manage terrestrial biodiversity:

(1) Mitigating threats to biodiversity in C1, with a focus on 
reducing the emissions of pollutants, encouraging recycling and 
sustainable use of resources, promoting environmentally friendly 
agriculture, building green cities, and combating such illegal 
activities as overfishing and overhunting.

(2) Ramping up protection efforts in C2 to achieve conservation 
and sustainable use of natural resources and biodiversity through 
the establishment of new protected areas and other area-based 
conservation measures (such as community-based conservation 
actions), establishing corridors for connectivity between 
protected areas and reducing anthropogenic damage to natural 
habitats. 

(3) Ensuring long-term conservation of biodiversity in C3  
by tightening control on the exploitation and utilization of 
natural resources in C3, establishing large protected areas, 
and strengthening monitoring, scientific research and other 
conservation actions.

Outlook
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China's LDN progress tracking and its contribution to global LDN

The vision of SDG Target 15.3, "to achieve a land degradation-
neutral world", is one of the key targets of the SDGs (United 
Nations, 2015). However, the definition of land degradation 
was a matter of considerable debate at one point, primarily as 
a result of divergence of opinion over the processes, causes, 
characteristics and effects of degradation. The lack of consensus 
is responsible for the huge discrepancies in the results of 
different land degradation assessments (4%-74% globally) and 
has seriously undermined the international community's ability 
to understand, at the scientific level, and accurately assess the 
real state of global/regional land degradation, thus hampering 
practical actions against, and effective management of, such 
degradation.

To tackle those challenges, the UN Inter-agency and Expert 
Group on SDGs (IAEG-SDGs) has defined a framework of 
indicators for Indicator 15.3.1 monitoring, including changes 
in land cover, land productivity and soil organic carbon, on 
the basis of which the United Nations Convention to Combat 
Desertification (UNCCD) and Group on Earth Observations 
Land Degradation Neutrality (GEO-LDN) Program have 
reviewed the methodologies for data selection and analysis and 

developed a Good Practice Guidance SDG Indicator 15.3.1 (Neil 
et al., 2019). However, global-scale, spatially disaggregated 
baselines and progress data for SDG 15.3.1 remain absent 
as a direct consequence of the unavailability of relevant 
data, methodological uncertainties and political sensitivities. 
Nonetheless, globally comparable and spatially disaggregated 
SDG 15.3.1 baselines and assessment findings, consistent 
with the UN 15.3.1 monitoring indicator framework, remain 
important from the perspective of Science, Technology and 
Innovation (STI) for SDGs.

In 2019, the CASEarth Project conducted a global land 
degradation baseline assessment for the 2000-2015 timeframe 
and developed a national-scale LDN report. This assessment 
provides a reliable baseline for tracking the progress of SDG 
15.3.1 and is an indispensable frame of reference for the 
assessment of the overall progress towards the realization of 
SDG 15.3. Taking advantage of these resources and guided by 
the UNCCD LDN monitoring framework, in 2020, CASEarth 
Project proceeded to monitor and assess global SDG 15.3.1 
progress (against the 2015 baseline), focusing on China's LDN 
dynamics and its contribution to global LDN.

◎ Data from SDG 15.3.1 assessment for 2000-2015 (Guo et al., 2019).

◎ Global land cover in 2015 and 2018 at 300 m spatial 
resolution from European Space Agency.

◎ 2000-2018 Enhanced Vegetation Index (EVI) data at 500 m 
spatial resolution.

◎ Global soil organic carbon, International Soil Reference and 
Information Centre (ISRIC) SoilGrid 250, at 250 m spatial resolution.

◎ RESOLVE Ecoregions 2017.

◎ Bulletins of Status Quo of Desertification and Sandification 
in China (2005, 2011 & 2015).

Background

Data used

This is one of the first studies to monitor and assess LDN baselines and progress at the globally 
consistent and spatially comparable national scale, on the basis of the UNCCD framework 
system and Big Earth Data.

A trend of continuous improvement in China's LDN has been observed. Compared to the 
2015 baseline, the net restored land area increased by 60.30% by 2018 and accounted for 
approximately 1/5 of the world's total, making it the number one contributor to global LDN.

Highlights

15.3 By 2030, combat desertification, restore degraded land and soil, including land affected by desertification, drought 
and floods, and strive to achieve a land degradation-neutral world.

Target: 
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Guided by the UNCCD Good Practice Guidance SDG Indicator 
15.3.1  and using internationally shared datasets, this study 
established tracking and monitoring of Indicator 15.3.1, 
assessed China's LDN trend and identified the contribution of 
China's LDN to global LDN based on globally consistent and 
comparable data, thus providing important informational support 
for the attainment of Indicator 15.3.1.

The methodology used in the study is applicable on a global 
scale, emphasizing compliance with the IAEG-SDGs indicator 
system, and the findings are globally consistent and comparable. 
These findings, therefore, do not reflect country or region-
specific SDG Target 15.3-related figures, as the degradation 
processes and indicator system considered at this scale are more 
complex. This does not mean, however, that the findings of this 
study have no significant referential value for understanding the 
progress toward Target 15.3 at national and regional levels. The 
state and trend of LDN in China examined through the lens of 

Big Earth Data are consistent with the conclusion of the National 
Forestry and Grassland Administration that "since 2004, the area 
of both desertification and sandification in China has declined 
for three consecutive monitoring periods and China has achieved 
zero growth in desertified land".

It is worth noting that the assessment of improvement and 
degradation strictly corresponds to the time periods under 
assessment (UNCCD-LDN scientific framework), so there are 
cases where the assessment findings indicate that improvement 
is under way but the land is actually in the status of degradation. 
Therefore, while we take note of the positive progress in LDN, 
we must be cognizant of the considerable challenges facing 
China in land degradation. In the future, science-informed 
conservation and management should be strengthened and the 
LDN monitoring methodology and capacity enhanced, with a 
view to achieving a higher level of LDN by 2030.

Outlook

Based on the assessed baselines for 2000-2015, a dynamic 
assessment for 2015-2018 was conducted against the three 
sub-indicators of the UN's IAEG-SDGs indicator system, i.e. 
land cover, land productivity and soil organic carbon. The land 
cover conversion matrix for 2015 and 2018 was used for land 
degradation and improvement assessment. Dynamic assessment 
of land productivity was made by analyzing the 2004-2018 
trends, with significant increase, significant decrease and other 
changes defined as restored, degraded and stable respectively. 
Regarding soil organic carbon, assessment was done by 

correlating land cover changes with soil carbon changes as 
proposed by the Intergovernmental Panel on Climate Change 
(IPCC), thus identifying three levels of soil carbon: degraded, 
restored and stable. The 2015-2018 dynamics were assessed 
by combining the three sub-indicators of land cover, land 
productivity and soil carbon, on the principle that degradation 
under any of the sub-indicators constitutes degradation. The 
findings so arrived are then combined with 2015 baseline to get 
the progress of global land degradation.

Method

The dynamics of global land degradation from 2015 to 2018 are 
shown in Figure 7-5. Statistical analysis indicates that the overall 
trend of SDG 15.3.1 between 2015 and 2018 was positive, 
but there were certain spatial variations. China saw a steady 
improvement in LDN from 2015 to 2018 and its net restored area 
of degraded land increased by 60.30%, accounting for 17.76% of 
the global total in 2018 (the highest in the world), which is very 
similar to 18.24% in the base year of 2015, making China the 
largest contributor to global LDN.

According to the data on land degradation dynamics in China 
from 2015 to 2018 (Fig. 7-6), 29.16% of the land was restored, 
1.56% degraded and 69.28% stable. Of the land whose status of 
degradation changed, compared to the 2015 baseline, 41.96% 
enjoyed continuous improvement, 28.05% went from stable 
to restored, 1.21% suffered continuous degradation and 2.32% 

went from stable to degraded. It is worth noting for the degraded 
land in 2015, 4.62×104 km2 became more degraded, but 8.02×104 
km2 of land was reversed in 2018, pointing to China's success 
in land degradation recovery. The status of degradation also 
varied among different types of land cover. Current degradation 
was mainly observed in cropland and grassland. Judging by the 
ratios of degradation versus improvement, China's woodland 
was the best performer in ensuring the LDN target, followed 
by cropland, which had a lower degradation-to-improvement  
ratio despite some degradation and was therefore under no 
great pressure in ensuring the LDN target. However, grassland 
and barren land were at risk, with their current degradation-to-
improvement ratios at 24.04% and 39.73% respectively. In view 
of the adverse effects of climate change, grassland and barren 
land warrant focused attention in the future.

Results and analysis
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Using the FVC dynamic data of the Loess Plateau between 
2000 and 2019, SECI is calculated as a measure of the ability 
of soil and water conservation strategies to control soil erosion 
(which may be construed as the effect of vegetation on erosion 
control if the measures taken are specific to vegetation only), 

to work out the erosion control effect of large-scale vegetation 
restoration projects (including reforestation of farmland, 
grazing ban and afforestation) on the Loess Plateau in recent 
years, by investigating the effect of changed vegetation on 
erosion control using the Universal Soil Loss Equation (USLE).

Dynamics between large-scale greening 
and soil and water conservation on the Loess 

Plateau and sedimentation of the Yellow River

Since 2000, thanks to the reversion of farmland to forest 
and grass as well as other soil erosion control measures, the 
ecological environment of China's Loess Plateau has undergone 
a profound transformation, with large-scale, significant 
improvements in its vegetation. As one of the few regions in the 
world where vegetation has markedly improved in recent years, 
it has attracted much international attention. With significant 
increases in vegetation comes a significant improvement in soil 
erosion on the Loess Plateau, as well as considerably reduced 
sedimentation in the Yellow River. Centering on SDG Target 

15.3 of the UN 2030 Agenda, this study is designed to gauge the 
contribution of large-scale greening of the Loess Plateau over the 
past two decades to soil and water conservation by calculating 
the Soil Erosion Control Index (SECI) of chosen periods to 
track the effects of changed vegetation on erosion control, on the 
basis of remotely sensed data and Fraction of Vegetation Cover 
(FVC). The purpose is to explore and develop a new approach 
to investigate regional land degradation and monitor soil erosion 
control in the future.

◎ Fraction of Vegetation Cover (FVC) product from 2000 to 
2019 at 1 000 m resolution, Global Land Service.

◎ Water Resources Bulletin, Yellow River Conservancy 

Commission.

◎ Yellow River Sediment Bulletin, Yellow River Conservancy 
Commission.

Background

Data used

Method

Big Earth Data feeds into the calculation of the Soil Erosion Control Index (SECI) of different 
periods to quantify the effect of vegetation change on soil and water conservation .

Since 2000, vegetation coverage on the Loess Plateau has been greatly improved, with an 
average increase of 17.06%, improving its effect on soil and water conservation by 22.00%.

Highlights

15.3 By 2030, combat desertification, restore degraded land and soil, including land affected by desertification, drought 
and floods, and strive to achieve a land degradation-neutral world.

Target: 



112

SDG 15

Big Earth Data in Support of the Sustainable Development Goals (2020)

Figure  7-7 .  Two-decade 
r e g i o n - w i d e  t r e n d s  o f 
vegetation (a) and increments 
in soil erosion control index 
(b) on Loess Plateau

For the purposes of this study, a Big Earth Data-based SECI was 
created to quantify the contribution of changed vegetation to soil 
erosion control. The findings indicate that the much improved 
vegetation cover of the Loess Plateau over the past 20 years has 
had a significant effect on soil and water conservation in the 
region, albeit to varying degrees from area to area.

Since the end of the 20th century, large-scale, intensive soil and 
water conservation projects for the Loess Plateau have been 
under way. During this period, the annual sediment discharge 

between Hekou and Longmen has been clearly responding to 
the human effort to reduce sedimentation, maintaining a low 
level of sediment discharge year after year. Since 2000, the 
annual sediment discharge at the Tongguan Hydrological Station 
of the Yellow River has been kept under 3.00×108 t, which is 
proof, at the receiving end, of the effectiveness of soil and water 
conservation on the Loess Plateau in recent years and that of the 
large-scale restoration of vegetation on the Plateau in stemming 
soil erosion.

Outlook

Over  the  pas t  20  years ,  the 
vegetation cover of the Loess 
Plateau has increased substantially 
(Fig.  7-7a),  with an average 
increase of 17.06% across the 
region. Further studies indicate 
that the rate of vegetation increase 
varies among different areas and 
typical river basins: 16.06% in the 
Shaanxi part of the Loess Plateau, 
21.58% in Yan'an City, 23.89% in 
north of Ganguyi along the Yanhe 
River, and 27.10% along the Dali 
River in northern Shaanxi.

The two-decade SECI increments 
for the Loess Plateau are shown 
in Figure 7-7b,  indicat ing a 
correlation between the SECI 
and vegetation cover. The SECI 
registered an average increase 
of 22.00% for the entire Loess 
Plateau: 17.10% in the Shaanxi 
part of the Yellow River basin, 
29.90% along the Dali River in 
northern Shaanxi,  12.30% in 
Yan'an City, and 18.10% in the 
upper reaches of the Yanhe River 
(north of Ganguyi).

Results and analysis
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Aeolian desertification information was extracted in compliance 
with the aeolian desertification classification system and 
interpretation keys. The classification system used in this study 
comes from the Classification System for Remote Sensing 
Monitoring of Aeolian Desertification in Northern China . The 

latter classifies aeolian desertification into four types: shifting, 
semi-shifting, semi-fixed and fixed sands. They correspond 
to four levels of severity of aeolian desertification: extremely 
severe, severe, moderate and light (Wang et al.,  2004).

Processes of aeolian desertification 
in the semi-arid region and its peripheries in 

northern China and review of control outcomes

Aeolian desertification is a type of desertification induced by 
the actions of wind-blown sand (Wang et al., 2015). It occurs 
and develops mainly in the semi-arid agro-pastoral ecotones and 
pastoral zones of northern China, which are also the main areas 
where the reversal of aeolian desertification has taken place in 
recent years. To monitor the trends of aeolian desertification 

in those areas and analyze how spatiotemporal changes in 
the aeolian desertified land respond to climate variation and 
anthropogenic factors is of vital importance, because the findings 
can help identify how aeolian desertification occurs and evolves 
and predict its future trajectory, so that policy-makers can 
develop appropriate control measures informed by science.

◎ US Landsat time series data from 1975 to 2015.

◎ 1:100 000 scale topographic maps.

◎ 1:1 000 000 topographic maps, Ministry of Natural 
Resources.

Background

Data used

Method

Long-time-series datasets on the aeolian desertification in northern China from 1975 to 
2015 are developed, providing important data support for accurately understanding the 
spatiotemporal processes of aeolian desertification in China.

The year 2000 was a watershed in the aeolian desertification of China's semi-arid regions. Until 
2000, there had been a degradation trend primarily because of irresponsible human activities 
such as overlogging, overcultivation and overgrazing. The aeolian desertification process began 
to reverse in 2000, largely thanks to the implementation of ecological protection policies.

Highlights

Figure 7-8 shows the distribution of aeolian desertified areas 
in the semi-arid areas and their peripheries in northern China. 
Aeolian desertification within the monitored region is most 

prominent in five sandy lands, where aeolian desertification 
accelerated between 1975 and 2000 with an average growth rate 
of approximately 2 486.57 km2 per annum. From 2000 onward, 

Results and analysis

15.3 By 2030, combat desertification, restore degraded land and soil, including land affected by desertification, drought 
and floods, and strive to achieve a land degradation-neutral world.

Target: 
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Figure 7-8. Spatiotemporal distribution of aeolian desertification in semi-arid region and its peripheries in northern China
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Figure 7-9. Changes in the area of aeolian desertified land in northern China over time

Aeolian desertification in the semi-arid areas and their 
peripheries in northern China is a result of the fragilities and 
volatilities of the local ecosystems and, to a larger extent, 
of anthropogenic causes. In the past 40 years, the natural 
environment context has not changed significantly. During the 
same period, however, there have been significant changes 
in climate and human activities. For a start, in the context of 
precipitation unchanged in the region as a whole and reduced 
precipitation in isolated areas, the main sign of climate change 
is a higher incidence of heavy rainfall coupled with a lower 
frequency of precipitation in general. This pattern has been 
particularly pronounced since 2010. Secondly, human activities 
have gradually transitioned from overcultivation, overgrazing 

and overlogging prior to 2000 to reforestation and regrassing 
of farmland, grazing ban by fencing off pastures and rotation 
grazing with rest periods, which are more sustainable ways of 
using land with environmental protection in mind. The variations 
of climatic and human behavior in different periods subjected 
aeolian desertification to the action of different drivers in those 
periods. Studies indicate that the occurrence and expansion of 
aeolian desertification from 1975 to 2000 was largely a result of 
irrational human activities. The reversal of desertification from 
2000 to 2010 is primarily attributable to the implementation of 
environmental protection policies. This reversal process slowed 
down from 2010 to 2015, largely because of droughts.

Outlook

the aeolian desertification process began to slow down and the 
area of aeolian desertified land began to shrink gradually, with 
an average reduction of 578.35 km2 per annum, much slower 
than the expansion prior to 2000. The rate of reversal since 2000 
has varied between different periods: The reversal was quite fast 
between 2000 and 2005, at an average reduction rate of 1 129.05 
km2 per annum. It went down to 604.81 km2 per annum between 
2005 and 2010. Then, from 2010 to 2015, the area of aeolian 
desertified land remained practically unchanged, down by a mere 
5.96 km2 in a space of five years.

Spatiotemporal changes varied among different types of aeolian 
desertified land (Fig. 7-9). Slightly and moderately aeolian 
desertified areas accounted for approximately 62% of the total 
area, while severely and extremely severely aeolian desertified 

areas accounted for approximately 38% of the total. The area of 
slightly aeolian desertified land increased in all periods except 
1975-1990 when it decreased, and the increase was particularly 
significant in the post-2000 period, indicating that the intensity of 
aeolian desertification in the monitored region was easing. The 
trends of moderately and severely aeolian desertified areas were 
rather similar: They increased significantly between 1975 and 1990, 
before easing off and then stabilizing gradually after 2000. The area 
of extremely severe desertification changed drastically over time: a 
sharp increase prior to 2000, followed by a swift drop. This pattern 
is further proof of a general trend of reversal, i.e. a lessening in the 
intensity of aeolian desertification in tandem with the decreasing 
area of aeolian desertification in the semi-arid areas of northern 
China after 2000.
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China's plant diversity: risks and conservation strategies

Human activities and land use have brought about unprecedented 
pressures and stresses on the natural environment, leading to the 
extinction of species in their thousands. In order to achieve the 
ambitious SDG Target 15.5 (i.e. to take urgent and significant 
action to reduce the degradation of natural habitats, halt the 
loss of biodiversity and protect and prevent the extinction of 
threatened species), countries and the international community 
as a whole must, as the first order of business, identify ways 
and means to achieve these objectives at the spatial level and 
determine which areas should be given priority in management 
and conservation, to achieve the greatest synergy between the 
conservation and use of biodiversity.

In the past, when prioritizing conservation areas on the principle 
of minimum area and wider protection of species, attention 

was focused on the hotspots of species distribution rather than 
the risks of species extinction, to the neglect of the intensity 
of anthropogenic threats to species, thus greatly undermining 
the effectiveness of efforts to mitigate species loss. This study 
uses China's protected plants as an example and provides an 
analysis of key areas where protected plants are at risk and the 
sanctuaries where they seek refuge, by taking into account 
a range of factors, including species distribution, habitats, 
elevation and human activities, with the help of Big Earth 
Data. These sanctuaries are critical to the survival of many 
threatened species, but most of such high-value habitats 
remain unprotected. Conservation and restoration actions are 
imperative to halt the extinction of species.

◎ Distribution of species, Global Biodiversity Information 
Facility, National Specimen Information Infrastructure, Chinese 
Field Herbarium, China flora of plant, provincial flora, and local 
records.

◎ Digital Elevation Model, Big Earth Data sharing portal.

◎ Land Cover product in 2018 at 300 m, European Space 

Agency.

◎ Vector of Protected Areas, Big Earth Data sharing portal, 
Resource and Environment Data Cloud Platform, World 
Database on Protected Areas.

◎ Human footprint map (McGowan, 2016).

Background

Data used

The Biodiversity Risk Index (BRI) that describes the risk of extinction is more widely applicable 
than the Red List Index, which is based on multiple dynamic assessments.

In areas facing high risks and high pressures from the compounding effect of biodiversity 
risks and anthropogenic pressures, protected areas only cover 4%. Developing conservation 
and restoration strategies tailored to the local realities to address conservation gaps will help 
improve the efficiency of conservation and halt species loss. 

Highlights

15.5 Take urgent and significant action to reduce the degradation of natural habitats, halt the loss of biodiversity and, by 
2020, protect and prevent the extinction of threatened species.

Target: 
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Figure 7-10. Bivariate maps of Biodiversity Risk Index (BRI)  vs 
Human Footprint (HFP), and plant diversity protection gaps in China

Integrating distribution data from multiple sources; 
factoring in habitat preferences of species and elevation 
limits; and filtering out areas unsuitable for species 
distribution by referring to land cover and elevation 
maps to bring the distribution range closer to actual 
distribution (Brooks et al.,  2019). Optimizing the 
BRI based on the distribution of species and the risk 
categories of more than 30 000 plant species on the 
Red List of Chinese Species published by the Ministry 
of Ecology and Environment in 2016, using the 
following formula:

where N is the number of species in the grid cell; WSi 

is a linear weighted score based on the International 
Union for Conservation of Nature (IUCN) conservation 
status of the ith species (i.e. Least Concern = 0, Near 
Threatened = 0.2, Vulnerable = 0.4, Endangered = 
0.6, Critically Endangered = 0.8 and Extinct = 1.0); 
and Area i is the total area of geographic distribution 
(km2) of ith species in the cell. Based on the bivariate 
distribution map of BRI and Human Footprint (HFP) 
at a resolution of 3 km, identifying key areas of where 
species are threatened and sanctuaries where species 
are unthreatened, with a view to providing important 
information for effectively mitigating and halting 
species loss.

Method

Areas with high risk of species extinction but low 
threat from human activities are concentrated in the 
high-altitude mountainous areas in northern Yunnan 
marked by an abundance of endemic species (Fig. 
7-10b), whereas the top 25% priority areas with high 
risk of species extinction and high threat from human 
activities are located in the more developed southern 
regions of China marked by a high concentration of 
human activities (Fig. 7-10c). Western China has large 
swathes of relatively intact wilderness providing better 
habitats where species are in better shape and less 
threatened by human activities (Fig. 7-10d). Although 
Inner Mongolia and northern Xinjiang face high-
intensity grazing, habitat fragmentation and other 
anthropogenic threats, northwest China as a whole is 
home to an abundance of ubiquitous species and the 
risk of species extinction there is relatively low (Fig. 7 
-10e).

Results and analysis
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By focusing on forests, land degradation and biodiversity, this 
chapter has discussed the development of Big Earth Data-
enabled SDG indicator evaluation modeling and methodology 
at three levels, i.e. global, national (China) and local (typical 
areas), against four SDG indicators, namely, forest area as 
a proportion of total land area (SDG 15.1.1), proportion of 
biodiversity conservation sites (SDG 15.1.2), degraded land 
as a proportion of total land area (SDG 15.3.1) and the Red 
List Index (SDG 15.5.1). We have achieved dynamic, spatially 
disaggregated and quantitative multi-indicator monitoring and 
mapping under SDG 15; acquired key datasets on global forest 

cover (at 30 m resolution) and the state and scope of threat to, 
and cumulative stress on, China's protected flora and fauna; 
developed some key methodologies, such as integrated spatial-
temporal-spectral forest feature extraction and quantification 
of the effects of changed vegetation on soil loss control; and 
proffered policy recommendations regarding the dynamics of 
China's land degradation neutrality and its contribution to global 
effort, aeolian desertification and mechanisms of change in 
soil erosion in northern China, and the conservation of China's 
biodiversity in the framework of the three global conditions and 
conservation strategies.

Summary

As a holistic measure of anthropogenic pressures, the Human 
Footprint (HFP) has become a powerful tool for predicting 
species extinction risk (Allan et al., 2019; Mokany et al.,  
2020). By collating HFP data, this study has identified hotspots 
where plant diversity is under threat, as well as sanctuaries 
of plant diversity in China. Drawing on the distribution of 
current protected areas, the study has mapped the gaps in the 
conservation of China's plant diversity and recommended 
tailored area-based conservation and management measures. The 
recommendations include the following: combining the creation 

of more protected areas to provide proactive protection with 
restoration management strategies that focus on management and 
mitigation of threats to protect habitats on which species depend 
for their survival; identifying areas for future protected areas 
expansion and important areas for enhanced habitat restoration 
management in China in order to achieve the SDGs; providing 
information on conservation gaps and useful methodologies for 
the implementation of national conservation action plans to halt 
biodiversity loss; and improving protected areas planning and 
the development of action plans.

Outlook

It is worth noting that only 4% of protected areas are found in 
high-risk, high-threat areas (Fig. 7-10c) and 31% of protected 
areas are in high-risk, low-threat areas. Species in these areas 
generally are in the high threat categories and live in severely 
fragmented habitats, where the risk of biodiversity loss and 
conservation value are high. For the former, strategies should 
be in place to restore the fragmented habitats; for the latter, 
conservation strategies are required to expand the area under 
conservation as a priority, to protect the sanctuaries on which the 
survival of species depends. In low-risk and low-threat regions, 
protected areas cover 27%, most of which are wilderness with 
uninterrupted landscapes and minimum human modification. 
They boast the largest area of protected land and a relatively 

low biodiversity risk. In general, the coverage of protected areas 
is low in regions under high anthropogenic pressures, which 
were overlooked in the past. It is difficult to set up protected 
areas in fragmented and degraded habitats with high BRI. In 
those regions, the main strategy should be the restoration of 
habitats and strong legislation be put in place to limit the threat 
to habitats and mitigate the loss of biodiversity. Since extinction 
is irreversible, it is all the more important to be proactive in 
providing protection for the currently unprotected areas and the 
habitats of unique biodiversity, to improve human well-being 
and encourage economic development in non-high-risk regions.



119

SDG 15

SDG 15 Life on Land

V
o
lc
a
n
ic
 c
ra
te
r，

W
u
d
a
lia
n
c
h
i N

a
ti
o
n
a
l P

a
rk



120

Big Earth Data in Support of the Sustainable Development Goals (2020)

The year 2020 marks the start of the Decade of Action for 
achieving the United Nations Sustainable Development 
Goals. What has transpired over the past five years points 
to some gaps and shortfalls in the implementation of the 
2030 Agenda, including data deficit, lack of research on 
the indicator system, and imbalance in development. The 
onus is on the STI community to deliver more. Of all 
the needs that must be met, data and methodology take 
precedence, both in utility and in urgency.

Focusing on 18 targets under six SDGs, this report 
presents studies on the application of Big Earth Data to 
the implementation of SDGs, with a view to contributing 
methodologies and datasets to global efforts to achieve these 
SDG targets.

(1) SDG Indicators 2.2.1 and 2.4.1 (Zero hunger): Between 
2002 and 2017, the prevalence of stunting among children 
under five years of age in China declined from 18.8% to 4.8%, 
fulfilling the 5.9% target prescribed in SDG 2.2. Through 
more extensive multiple cropping, China will be able to 
harvest crops from an additional area of 1.35×105 km2 to 
3.63×105 km2, and the yield of rice and wheat in regions with 
the largest area sown to these crops can potentially increase 
by 13.3% and 12.5%, respectively, over the 2015 levels, 
which means the total production of both crops nationwide 
will be able to meet the forecasted consumption for 2030. On 
the other hand, there is room for a 17-19% reduction in the 
application of nitrogen and phosphorus fertilizers for China's 
three major staple food crops, without impacting their 
production.

(2) SDG Indicators 6.3.2 and 6.6.1 (Clean water and 
sanitation): Between 2000 and 2019 in China, water 
transparency (Secchi Disk Depth, SDD) in lakes was 
generally good and a trend of continuous improvement was 
observed. Between 2015 and 2018, the area of mangrove 
forests in China registered a net growth of 22.11%, evidence 
of marked success in the restoration effort, alongside a net 
reduction of 2.59% in the area of S. alterniflora , whose 
invasion was brought under effective control. Significant 
changes have been observed in 50% of the water area of 
Ramsar sites in Asia, Europe, and Africa between 2000 and 
2018, of which 58% were on a growth trajectory.

(3) SDG Indicators 11.1.1 and 11.2.1 (Sustainable cities and 
communities): Since 1990, the ratio of land consumption rate 
to population growth rate has grown in 434 cities in China. 
Then, in 2015, the expansion of urban built-up areas began 
to slow down. There were significant spatial disparities in 
2019 between North and South China and between East and 
West China in the shantytown demographics of the main 
urban districts in 27 Chinese cities, with the shantytown 
population exceeding 3% of the total urban population in 
four cities. Compared to the 2015 level, open public space 
as a proportion of built-up areas in 342 prefectural cities 
increased by 1.5% on average. Among them, close to 50 
cities had an open public space ratio of over 20%. In 2018, 
an average 80.56% of the urban population in China had 
easy access to public transportation and that ratio increased 
by varying margins over 2015 in approximately 80% of 
cities. The 2018 SDG 11 integrated index in 28 provincial-
level administrative regions showed varying degrees of 
improvement over 2015.

(4) SDG Targets 13.1 and 13.2 (Climate action): Since the 
late 1990s, the frequency and intensity of extreme high-
temperature events and heatwaves have markedly increased, 
and relatively defined extreme high-temperature events and 
heatwaves in high-latitude and high-altitude regions warrant 
close attention. A high-probability forecast for a forward shift 
in the anthesis and maturation of China's main crops through 
the 2030s points to a risk of yield reduction for wheat and 
maize, which calls for adjustments and improvements in 
such areas as crop management and breeding of improved 
varieties.

(5) SDG Targets 14.1 and 14.2 (Life below water): The 
average abundance of floating debris in China's coastal 
waters in 2018 was down by approximately 25% compared 
to the 2010-2014 average. Most of the microplastics found 
in China's coastal waters in 2019 were fibers, threads, 
pellets/granules, and fragments. Between 2015 and 2019, 
the ecosystems of Jiaozhou Bay, Sishili Bay, and Daya Bay 
were in good health on the whole. Between 2017 and 2020, 
the area of raft culture in China's seas was growing on the 
whole, but the area of raft culture within the boundaries of 
the coastal ecological conservation red line remained more or 
less stable.

Summary and Prospects
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(6) SDG Indicators 15.1.1 and 15.1.2 (Life on land): 
Between 2000 and 2019, vegetation cover on China's Loess 
Plateau improved significantly, with the overall effect 
of vegetation on soil loss control up by 22%. Between 
2015 and 2018, China's LDN showed a positive trend 
as evidenced by a 60.30% growth in the net area of land 
restored, representing approximately one fifth of the net area 
of land restored globally and making China the number one 
contributor to global LDN. Conserving and sustainably using 
biodiversity under the 3Cs framework was implemented in 
China and findings indicate that the coverage of protected 
areas in regions under high risk and high stress from the 
compounding effects of biodiversity risks and anthropogenic 
pressures is on the low side, prompting recommendations 
for tailored solutions to protect and restore unprotected or 
underprotected areas.

The scourge of COVID-19 that began in early 2020 
has posed a serious challenge to public health and is 
hitting the world economy hard on all fronts, making the 
implementation of the 2030 Agenda at the global level 
an uphill struggle. Given this context, it is incumbent 
upon the global community to consider, in greater depth, 
how to accelerate the implementation of this agenda and 
explore ways and means of using STI, Big Earth Data in 
particular, to overcome the constraints that are holding 
back sustainable development.

(1) Globally, the lack of data on indicators remains a major 
obstacle to the achievement of SDGs. Many countries, 
especially developing countries, have not been able to 
monitor and map their progress in meeting SDG indicators 
through the effective use of sophisticated technology. The 
dearth or absence of SDG-related data is a yawning gap in 
the toolkit.

(2) Keeping close tabs on the progress in the implementation 
of the 2030 Agenda at the global level calls for a well-
developed system of evaluation methodology and criteria. 
Therefore, improving the SDG indicator system and its 
evaluation methodology supported by Big Earth Data is now 
an important project that demands the immediate attention of 
the global scientific and technological community.

(3) Big Earth Data, as a powerful tool for dynamic and 
objective macroscale monitoring, has the potential to 
provide an abundance of large-scale, cyclic information for 
policy-making support in relation to SDGs (Guo, 2018). 
However, such potential of Big Earth Data in support of 
SDG implementation at the global level has yet to be fully 
understood by policy-makers, scientists and practitioners 
in different disciplines, hence the urgent need to ramp up 
scientific and technical cooperation on Big Earth Data 
whereby methodologies and data can be shared and the 
implementation of SDGs accelerated.

To date, Chinese scientists have undertaken a range of 
projects using Big Earth Data in the service of sustainable 
development. Their efforts should continue and focus on 
the following priorities to study a host of major scientific 
issues standing in the way of SDGs with a systematic and 
holistic approach.

(1) How Big Earth Data can support the SDGs deserves 
closer study. Implementing the SDGs requires an approach 
that integrates economic, social, and environmental 
dimensions, leading to the creation of a new, more 
participatory discipline, namely, sustainability science, the 
objective of which is to generate useful scientific knowledge 
for sustainable development. The dynamic macroscale 
monitoring capabilities associated with Big Earth Data 
provide an important tool with which to evaluate economic, 
social, and environmental sustainability, and make it possible 
to integrate data from multiple sources to generate more 
relevant and richer information for support to policy-making. 
Going forward, it is necessary to apply Big Earth Data to 
the analysis of the dynamics among economic, social, and 
environmental factors subsumed in the SDGs, with a view to 
refining the SDG indicator system.

(2) SDG data sharing services based on Big Earth Data 
should be upgraded. Further research will be conducted on 
a range of technologies for, inter alia, real-time access, on-
demand aggregation, multi-source integration, open sharing, 
and analysis of SDG-related data. The Chinese Academy 
of Sciences has produced 8 PB of data, to which more 
data in the order of petabytes are being added annually. 
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These resources should be put to good use, to develop a 
methodological system for Big Earth Data-enabled SDG 
assessment and measurement; to collect, process, and 
produce SDG-related data; and to deliver complete lines of 
data products for SDG assessment, which are then shared 
with the UN family, including agencies and Member States, 
as a substantive solution to overcome data deficit in the 
implementation of SDGs.

(3) Capacity building for the use of Big Earth Data to 
monitor and map SDG progress should be stepped up. 
An important objective of sustainable development is to 
address unbalanced development and underdevelopment 
at the global level and make sure no one is left behind. 
Only through proactive sharing of the STI deliverables to 
benefit technologically disadvantaged countries by way of 
international cooperation can the 2030 vision be realized 
globally to the greatest extent possible (Guo, 2017). The 
next step is to build SDG data infrastructure that integrates 
high-performance computing, big data analysis, and artificial 

intelligence to create a data visualization and comprehensive 
analysis platform for SDG research, and to provide human 
resources training for developing countries in the Big Earth 
Data-enabled monitoring and evaluation of SDG progress.

(4) Knowledge support for SDGs with Big Earth Data 
should be strengthened. STI is instrumental in achieving 
sustainable development. Given the ever tighter resources 
and environmental constraints on our planet, there is an 
urgent need to effectively observe and understand the 
changing patterns of environmental resources in the Earth 
system and to investigate the relationship between humanity 
and the planet and the interplay between this relationship 
and sustainable development, so as to achieve common 
development through more effective science-informed 
solutions. Going forward, science and technology will be 
fully leveraged to provide critical support in the form of 
knowledge, expertise, and technical means for balanced 
development across economic, social, and environmental 
pillars and the achievement of the 2030 Agenda.
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Acronyms & Abbreviations

Acronyms & Abbreviations

BP Ratio Bacillariophyta Pyrrophyta Ratio

BRI Biodiversity Risk Index

CAS Chinese Academy of Sciences

CASEarth CAS Big Earth Data Science Engineering Program

CCMP Cross-Calibrated Multi-Platform

Chl a Chlorophyll a

COVID-19 Corona Virus Disease 2019

DEM Digital Elevation Model

DSSAT Decision Support System for Agrotechnology Transfer

EGR Economic Growth Rate

EGRLCR Ratio of Economic Growth Rate to Land Consumption Rate  

EVI Enhanced Vegetation Index

FAO Food and Agriculture Organization of the United Nations  

FVC Fraction of Vegetation Cover

GDP Gross Domestic Product       

GEO Group on Earth Observations

GEO-LDN Group on Earth Observations Land Degradation Neutrality

GEV Generalized Extreme Values

GF-2 Gaofen-2                      

GPP Gross Primary Productivity   

HFP Human Footprint

IAEG-SDGs Inter-Agency and Expert Group on SDG indicators

IPCC Intergovernmental Panel on Climate Change  

ISRIC International Soil Reference and Information Centre

IUCN International Union for Conservation of Nature

JRC Joint Research Centre of the European Commission

KBAs Key Biodiversity Areas

LCR Land Consumption Rate

LCRPGR Ratio of Land Consumption Rate to Population Growth Rate

LDN Land Degradation Neutrality

LWS Level of Water Stress
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MODIS Moderate Resolution Imaging Spectroradiometer  

NDVI Normalized Difference Vegetation Index

OECD Organisation for Economic Co-operation and Development

OLI Operational Land Imager

PE Polyethylene 

PET Polyethylene Terephthalate  

PGR Population Growth Rate

PMUD Population in Main Urban Districts

PPST Proportion of Population in Shantytowns

PS Polystyrene  

PST Population in Shantytowns

RCP Representative Concentration Pathway   

RS-CYM Remote Sensing-Crop Yield Model   

SDD Secchi Disk Depth  

SDG Sustainable Development Goal

SDSN Sustainable Development Solutions Network 

SECI Soil Erosion Control Index

STI Science, Technology and Innovation

TFM Technology Facilitation Mechanism

TRMM Tropical Rainfall Measuring Mission 

UN United Nations    

UNCCD United Nations Convention to Combat Desertification

UNDRR United Nations Office for Disaster Risk Reduction  

UN-Water United Nations Water

VIIRS/DNB Visible Infrared Imaging Radiometer Suite Day/Night Band

WHO World Health Organization 

WWF World Wide Fund for Nature
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