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Big Earth Data in Support of the Sustainable Development Goals (2019)

On the 70th anniversary of the United Nations (UN) in 
September 2015, heads of state and delegates gathered 
at the UN headquarters in New York and adopted 
the 2030 Agenda for Sustainable Development. This 
comprehensive sustainability framework was built on the 
basis of the historical experiences of human society and 
a shared expectation for the future. It presents a blueprint 
for countries to pursue global sustainable development 
in the next 15 years. The 17 Sustainable Development 
Goals (SDGs) incorporate various social, economic, 
environmental, and developmental targets and indicators, 
and have been endorsed by all countries with respective 
national implementation plans. 

With the advancement of science, technology, and 
innovation (STI) accelerating, there is a growing 
international consensus that STI must play a key role 
in facilitating the implementation of SDGs. To this 
end, the UN established the “Technology Facilitation 
Mechanism” to bring together scientific communities, 
policy makers, business sectors, and other stakeholders 
for their collective ideas, knowledge, and wisdom to 
build societies with harmony between humankind and 
nature. The Chinese Academy of Sciences (CAS), being 
a member of the international scientific community, has 
been mobilizing its research capacities for action.

The SDGs consist of 17 goals, 169 targets, and over 230 
indicators. Countries have different and very diverse 

development contexts. The key to success for one goal 
is often linked to solving issues associated with other 
goals. The SDGs thus constitute a vast system that is 
complicated, diverse, dynamic, and interconnected. 
This makes effective assessment and monitoring of 
each and all SDG targets and indicators essential to 
ensure the achievement of SDGs. Currently, only about 
45% of indicators are supported by both methods and 
data, about 39% have methods but lack data, and some 
16% have neither standard methods nor data. The full 
implementation of the 2030 Agenda for Sustainable 
Development will be hampered if these problems are not 
effectively resolved. 

CAS addresses these challenges and concentrates on five 
SDGs, including: SDG 2 (Zero Hunger), SDG 6 (Clean 
Water and Sanitation), SDG 11 (Sustainable Cities and 
Communities), SDG 14 (Life below Water) and SDG 
15 (Life on Land). CAS thus works on the 11 associated 
indicators of these SDGs, especially the indicators that 
are relatively weak in data or methods. The case studies 
presented in this report  demonstrate that Big Earth Data 
and related technologies can provide new analytical tools 
and data infrastructures for understanding complex and 
interconnected sustainability issues. The continued effort 
to develop a Big Earth Data system will provide robust 
and complementary data services to support and improve 
SDG indicators. Furthermore, China’s effort on Big Earth 
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Data applications in service of SDGs will likely be of interest 
to some other developing countries, particularly those lacking 
technological capabilities. 

The research on Big Earth Data for SDGs is an important 
contribution of China towards the 2030 Agenda for 
Sustainable Development. It is a new platform for Chinese 
scientists and international scientific communities to work 
together. I would like to thank the research team led by Prof. 
GUO Huadong for their efforts towards implementing SDGs, 
and I expect them to bring new and more exciting results in 
coming years.

BAI Chunli
President, Chinese Academy of Sciences
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There are four major challenges in the implementation of 
the 2030 Agenda for Sustainable Development, including: 
(1) missing data and the evolution of SDG indicators, (2) 
complementary and non-complementary interconnections 
between different Sustainable Development Goals (SDGs), 
(3) complicated and varied problems in quantifying 
and monitoring indicators within different national and 
local contexts, and (4) difficulties in modeling indicators 
to monitor SDGs. Particularly, the main challenge in 
monitoring progress relates to the lack of data available for 
the development of indicators, and this lack of data has been 
identified for more than half of indicators. 

In order to achieve the SDGs and effectively assess their 
progress with the full strength of science, technology, and 
innovation (STI), the United Nations (UN) has established 
the “Technology Facilitation Mechanism” (TFM). The TFM 
consists of three components: Interagency Task Team on STI 
for the SDGs (IATT) with a 10-Member Group to support 
TFM, a collaborative Multi-stakeholder Forum on STI for 
SDGs (STI Forum), and an online platform as a gateway for 
information on existing STI initiatives, mechanisms, and 
programs. Presently, a pressing priority of TFM is to make 
breakthroughs towards Tier II indicators (methods established 
but with poor data) and Tier III indicators (methods under 
development with either poor data or no data). 

As an important aspect of technological innovation today, 
big data is bringing new tools and methodologies to scientific 
research. Based on Earth science, information science, and 
space science, Big Earth Data derives and integrates data 
from spatial Earth observations as well as terrestrial, oceanic, 
atmospheric, and human activity data from other sources. 
Big Earth Data is therefore characterized in terms of massive 
quantity, multiple sources, heterogeneous structure, and 

high complexity. Big Earth Data can also be non-stationary, 
unstructured, multi-temporal, and multi-dimensional. 
Effective use of Big Earth Data has offered a new key to 
generating knowledge about planet Earth, playing a major 
role in promoting sustainable development.

To this end, the Chinese Academy of Sciences (CAS) has 
launched research on Big Earth Data for the implementation 
of the 2030 Agenda for Sustainable Development. SDGs, 
especially the goals closely related to Earth’s surface, the 
environment, and natural resources, have the characteristics 
of being large-scale with cyclical changes. The macroscopic 
and dynamic monitoring capabilities of Big Earth Data thus 
fit well as an important means for assessment of progress on 
sustainable development.

The main objectives of the research on Big Earth Data 
for SDGs include converting Big Earth Data into SDG-
related information, providing decision support for SDG 
implementation, constructing a Big Earth Data integration 
system for SDG indicators, and investigating the inter-linkages 
among different components of the Earth system. We have 
preliminarily sorted out 11 indicators from five SDGs as a 
priority. These indicators constitute 6% of Tier II indicators 
and 8% of Tier III indicators. The five SDGs include: SDG 2 
(Zero Hunger), SDG 6 (Clean Water and Sanitation), SDG 11 
(Sustainable Cities and Communities), SDG 14 (Life below 
Water), and SDG 15 (Life on Land). 

Big Earth Data supports SDG indicators in three major ways. 
(1) Big Earth Data is used to fill in missing data and provide 
new sources of data for evaluation. (2) New methodologies 
are created to evaluate SDGs on the basis of Big Earth Data 
technologies and models. (3) The research provides practice 
cases of Big Earth Data for SDGs, and aids in monitoring 
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the progress of SDG indicators. It relies on novel methods 
for multi-source data acquisition, cloud data analysis, and 
artificial intelligence technologies to study cases at different 
scales. These methods also aid in developing global and 
regional SDG indicator assessment systems based on Big 
Earth Data for global and national appraisal and reporting.

The report Big Earth Data in Support of the Sustainable 
Development Goals presents 12 case studies of Big Earth 
Data on the development of SDG indicators and sustainability 
assessments in the above-mentioned five SDGs. These cases 
provide in-depth, systematic research and evaluation results 
on the selected SDGs and indicators by means of data, method 
models, and decision support. The case studies with focus 
varying from constructing databases, building index systems, 
and evaluating indicator progress. Each case study first 
clearly lists the corresponding SDG targets and indicators it 
addresses, and then proceeds with the research methods, data, 
analysis results, and the prospects for future research. It can 
be seen that Big Earth Data as a new scientific methodology 
has started demonstrating its great value and potential for 
application in monitoring and evaluating SDGs. The report 
concludes with a summary of the major progress in Big Earth 
Data for SDGs and future research priorities.

In The Sustainable Development Goals Report 2019, UN 
Secretary-General António Guterres said in his foreword that 
“progress is being made in some critical areas”, and that from 
these advances, “we know what works”, including “better use 
of data; and harnessing science, technology and innovation 
with a greater focus on digital transformation.” Liu Zhenmin, 
Under-Secretary-General of the UN Department of Economic 
and Social Affairs, also pointed out in the report that “Most 

countries do not regularly collect data for more than half of the 
global indicators”, and “Increased investment is urgently needed 
to ensure that adequate data are available to inform decision-
making on all aspects of the 2030 Agenda.” These messages 
underline the importance and urgency of data for SDGs, for 
which Big Earth Data is deemed to make a unique contribution.

The TFM is an important driver for achieving SDGs, fully 
concurring with China’s concept of and strategy for STI for 
sustainable development. Big Earth Data as an innovative 
technology has great potential to this end. Research on SDGs 
will continue and a report will be published on Big Earth 
Data in Support of the Sustainable Development Goals every 
year. For this perspective, we warmly welcome cooperation 
from all research partners, both in China and around the 
world.

On the occasion of this report’s publication, I would like 
to express my heartfelt thanks for the guidance and advice 
received from CAS, the Ministry of Foreign Affairs of 
China, the Ministry of Science and Technology of China, and 
other related departments. My sincere gratitude goes to all 
contributors engaged in this research, whose hard work has 
made this report possible. 

GUO Huadong
CAS Academician 
Research Team Leader, Big Earth Data for SDGs
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Executive Summary

In 2015, the United Nations (UN) Sustainable Development 
Summit adopted the 2030 Agenda for Sustainable 
Development to promote sustainable development in three 
dimensions — economic, social, and environmental—
in a balanced and integrated manner, which represents 
a milestone in our progress towards international 
development cooperation. However, the implementation 
of the agenda faces several challenges from a scientific 
perspective, including data deficiency, imperfect methods, 
interconnected and mutually constrained targets, diverse 
localization issues, and other problems restricting the pace 
of progress. As an important part of big data, Big Earth 
Data provides the capability to integrate data from multiple 
sources and helps to produce more relevant, frequent, and 
accurate information about complex processes that can 
support decision making and policy formulation. These 
traits hold potential for important contributions towards 
the agenda and support various aspects of the Sustainable 
Development Goals (SDGs). Big Earth Data in Support 
of the Sustainable Development Goals (2019) strongly 
supports and is committed to facilitating the implementation 
of SDGs. It will focus on research to fill in knowledge gaps 
and develop technologies, methodologies, data products, 
and open, accessible cloud-based data analysis environments 
for selected SDGs, including SDG 2 (Zero Hunger), SDG 
6 (Clean Water and Sanitation), SDG 11 (Sustainable Cities 
and Communities), SDG 14 (Life below Water), and SDG 
15 (Life on Land). 

For SDG 2, this report targets indicator 
about proportion of agricultural area 
under  product ive  and  sus ta inable 
agriculture (SDG 2.4.1), and evaluates the 
indicator in China by adopting multiple 

sources of data and employing remote sensing information 
extraction models, statistical models, and ecological models. 
Evaluation of the environmental impacts of food production 
in China indicates that environmental impacts per unit 
of production has decreased since 2000, showing that 
China’s cropping systems are becoming more sustainable. 
Meanwhile, land use change driven by urbanization 

challenged this trend. By monitoring the progress of this 
indicator, this report proposes that further interactions 
between land use change and farm management are critical 
to improving the sustainability of global food production 
systems for SDG 2.

For SDG 6, this report focuses on water 
quality (SDG 6.3.2) highlighting the 
potential of Big Earth Data to support 
SDG 6 by developing data products and 
technical methods. In this case, multiple 

sources of data such as Internet data, and statistics were 
applied. The integration of spatiotemporal data and model 
simulations helped produce an overall analysis of surface 
water environments in China. The results show that the 
surface water quality of China in 2017 is slightly improved 
compared with that of 2016, and the surface water quality 
in China’s western region was superior compared to the 
eastern region. 

For SDG 11, this report focuses on five 
indicators, including public transport 
(SDG 11.2.1) ,  urbanizat ion (SDG 
11.3.1), cultural and natural heritage 
(SDG 11.4.1),  PM2.5 (SDG 11.6.2) 

and public spaces (SDG 11.7.1). This report utilizes Big 
Earth Data in place of the traditional statistical data and 
increases the spatiotemporal resolution of SDG indicator 
evaluation. This report also develops and employs the Big 
Earth Data methods for assessing China’s domestic practices 
aimed at achieving SDG 11. A global 10-meter spatial 
resolution impervious surface product with an overall 
accuracy greater than 86% generated by fusion of optical 
and synthetic aperture radar (SAR) data provides important 
data support and resolves data deficiency for the monitoring 
and evaluation of SDG 11.3.1. Utilizing Big Earth Data, 
this report has also produced datasets like public transport 
information, PM2.5 products, and proportion of public spaces 
in built-up urban areas. These products provide support 
for comprehensive evaluation of sustainable development 
in Chinese cities. By evaluating SDG 11 indicators and 



09

FOREWORD

monitoring related processes for SDG 11.4.1, this report 
has improved the SDG indicator system, making the 
recommendation to “increase capital investment per unit area 
to preserve and protect world cultural and natural heritage”. 

For SDG 14, this report  focuses on 
marine pollution (SDG 14.1) and marine 
ecosystem health management (SDG 
14.2). Based on field data on nutrient 
composition, chlorophyll-a concentration, 

phytoplankton biomass, and chemical indexes like dissolved 
oxygen observed in the coastal waters of China, and the 
bulletin of the national marine monitoring departments, 
an integrated eutrophication assessment model and an 
experimental evaluation model for marine ecosystems 
were developed. Based on the framework of “Pressure-
State-Response”, an integrated eutrophication assessment 
model was developed which was implemented at different 
scales of estuaries and bays along Chinese coastal lines 
to  assess their level of eutrophication. The results provide 
scientific support  and decision making for the management 
of discharged offshore nutrient pollutants and coastal 
eutrophication.Furthermore, experimental evaluation of 
the ecosystem health of Jiaozhou Bay was carried out, and 
a simulation system will be developed to predict possible 
responses of coastal ecosystems to the changes in marine 
pollution. By further promoting the operational application 
of related technologies, it is expected to provide decision-
making support for offshore environmental protection and 
management. The system can also effectively promote the 
realization of the SDG 14 target.

For SDG 15, this report takes proportion 
of important sites for terrestrial and 
freshwater biodiversity that are covered by 
protected areas (SDG 15.1.2), and Red List 
Index (SDG 15.5.1) as research objects. 

The report presents three cases evaluated and monitored 
at national, and local scales. Biodiversity monitoring 
platforms were constructed to collect data for assessing the 
management effectiveness of Qianjiangyuan National Park. 
Our results show that cross-border cooperation is required to 
improve the effectiveness of park management. By evaluating 
the habitat fragmentation of the giant panda, it was found 
that panda habitats during the period from 1976 to 2013 
became smaller and more fragmented. The report proposes 
to comprehensively consider the number of protected species 
and the protection of habitat environments. Based on the 
evaluation of the Red List Index, it was found that the Red 
List Index of higher plants and terrestrial mammals in China 
was on the rise from 2004 to 2017, while the Red List Index 
of birds was on the decline.

This report cites 12 typical cases centered on 11 SDG 
indicators of five selected SDGs and conducts in-depth 
research and appraisal of relevant SDG targets and 
indicators. It covers the perspectives of data, methods, 
models, and decision support, and provides a systematic of 
understanding challenges and potential solutions. In addition, 
it demonstrates the great value and potential of Big Earth 
Data in monitoring SDG indicators, and provides important 
support for decision-making and relevant research concerning 
SDGs.

Executive Summary
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Big Earth Data for SDGs

Data-intensive Paradigm

The rapid development of science and technology, with its 
growing acceptance and social demand, has enabled a revolution 
focused on collecting, storing, and utilizing data generated from 
human activities. Semi-structured and unstructured data have 
emerged in large volumes as the production and storage of data 
is no longer limited by time and space, and this has triggered an 
explosive growth of data. The volume and complexity of data is 
beyond the capabilities of traditional data management systems 
and processing models, which has given rise to the concept of 
big data.

This data revolution includes open data flows, the rise of 
crowdsourcing, the emergence of new data-gathering information 
and communications technology, the explosive growth of big 
data availability, and the popularization of artificial intelligence 
and the Internet of Things. The data revolution is affecting 
global production, distribution, and consumption patterns, and is 

changing human lifestyles, economic mechanisms, and national 
governance models. Meanwhile, computational science and data 
sciences have made real-time processing and analysis of big data 
a reality. New data obtained through data mining can be used 
as a supplement to official statistics and survey data to promote 
the accumulation of information on human behavior and other 
empirical information. The combination of new and traditional 
data can create high-quality information that is more detailed, 
timely, and relevant.

Data is one of the most significant elements that may affect 
decision-making processes. Using advanced mining and analysis 
functions on long-term, macro and micro multi-source data 
obtained through big data technology, it is possible to better 
monitor and evaluate the progress of implementing SDGs, and 
propose more scientific and targeted development guidance.

As an important part of big data, Big Earth Data is becoming a 
new frontier of Earth science, and is playing a significant role in 
promoting the in-depth development of Earth science and major 
scientific discoveries.

Big Earth Data is a new data-intensive research method that 
consists of big data with a spatial reference, including data 
related to land, oceans, the atmosphere, and human activities. 
Big Earth Data is generated by a variety of Earth observation 
methods, field surveys, and ground sensor networks. It bears the 
general characteristics of big data—large volume, multi-source, 
multi-temporal—and additionally has the characteristics of high 

instantaneity, arbitrary spatiality, and physical correlation, with 
Earth observation, communication, computation, and network 
technologies at its core.

Big Earth Data is not limited to scientific research, but also 
contributes to the sustainable development of our society and 
serves the SDGs. An important feature of Big Earth Data is 
the integration of multi-source data, which can provide more 
relevant and comprehensive information from complex and 
frequent analysis. The development of Big Earth Data will usher 
in more open and transparent data policies, so that humankind 
can hope for a better future for ourselves and the planet.

The core of the 2030 Agenda for Sustainable Development is 
the 17 Sustainable Development Goals (SDGs). China attaches 
great importance to the implementation of the agenda and 
makes important contributions to addressing global challenges 
and achieving common development through practical actions. 
The 2030 Agenda for Sustainable Development is an ambitious 

undertaking and requires support from different sectors of 
society. The role of science and technology in particular is 
critical to facilitate knowledge-driven decisions and science-
based policy development processes. Among numerous 
technologies and disciplines, big data technology, which is 
growing rapidly, is playing a distinct and significant role.

Big Earth Data
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At present, the UN, national governments, and international 
organizations are developing systems for monitoring and 
evaluating SDG indicators. However, one of the biggest 
challenges in implementing these systems is the lack of data 
to monitor the progress of various SDGs. Incomplete and 
inconsistent data statistics and the lack of systems for observing 
indicators are the main reasons for the lack of data and the 
low quality of existing data. Furthermore, indicators require 
multidisciplinary information, which is difficult to integrate and 
analyze using traditional systems, complicating the monitoring 
of SDG indicators. 

Among the SDGs, many targets that are closely related to the 
environment and resources of the Earth surface are characterized 
by large-scale, periodic changes. Therefore, the Chinese 
Academy of Sciences (CAS) has launched research on Big 
Earth Data for SDGs, aiming to utilize Big Earth Data to expand 
upon the capabilities of inter-disciplinary science. The research 
systemically and holistically studies a series of major scientific 

issues improving scientific understanding of the Earth system 
to produce major breakthroughs, discoveries, and technological 
innovations in different scientific domains.

Applying Big Earth Data as a Technology Facilitation Mechanism 
(TFM) for SDGs, the research proposes to conduct research 
in relation to SDG 2 (Zero Hunger), SDG 6 (Clean Water and 
Sanitation), SDG 11 (Sustainable Cities and Communities), SDG 
14 (Life below Water), and SDG 15 (Life on Land). The macro 
and dynamic monitoring capabilities of Big Earth Data provide 
an important tool for evaluating sustainable development. It 
can integrate databases, model libraries, and decision-making 
methods for resources, environment, ecology, and biology, 
building a sustainable development evaluation index system 
and decision support platform. These tools can effectively 
monitor sustainable development within economic, social, 
and environmental aspects, which helps generate richer, more 
relevant information for decision support.

Big Earth Data for Implementing SDGs

Figure 1-1. Framework of Big Earth Data for SDGs.
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The research on Big Earth Data for SDGs is committed to 
providing assistance and facilitating SDGs in multiple capacities:

(1) Becoming a global data provider by constructing the 
Big Earth Data Sharing Service Platform to facilitate SDG 
implementation globally.

(2) Constructing an assessment and monitoring system for 
selected indicators of SDGs 2, 6, 11, 14, and 15.

(3) Evaluating and demonstrating projects on Big Earth Data 
utilization for SDGs in three broad aspects: development of data 
products, development of models and methods, and decision 
support.

(4) Publishing the Series Report on Big Earth Data in Support 
of the Sustainable Development Goals based on data collection 
and analysis, conducting regular evaluations of the progress of 
SDGs, and forming new ideas for global assessment of SDGs.

Data sharing is a key element to ensure support of Big Earth 
Data for SDGs, and therefore demands elimination of data 

islands and improvements in the efficiency of data exchange and 
sharing. CAS is working to develop and operate a Data Sharing 
Service Platform that breaks the policy barriers of data sharing, 
promotes the formation of a new model for online data sharing, 
improves the data sharing evaluation system, and establishes 
operable intellectual property protection mechanisms. These 
include data sharing indicators and verified authenticity, 
accuracy, and timeliness of shared data. The system also ensures 
that the data is discoverable, accessible, interactive, reusable, 
and citable. At present, the total amount of data shared on this 
platform is approximately 5 PB. As the hardware of the platform 
develops, about 3 PB of data will be updated each year.

Big Earth Data is a technological innovation method, and a 
TFM for SDGs will be developed, improved, and established 
through a series of major scientific studies with a systematic and 
holistic concept, contributing to human understanding of Earth, 
and realizing new breakthroughs in serving global sustainable 
development.
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Background

The eradication of hunger and the guarantee of food security is 
one of the fundamental goals of global sustainable development. 
At present, the proportion of global population suffering from 
malnutrition has risen after years of continuous decline. Climate 
change, wars, conflicts and unbalanced economic development 
in many regions of the world account for the trend and place 
high levels of uncertainty on global food security. 

SDG 2 aims to end all forms of hunger, achieve food security 
and improved nutrition and promote sustainable agriculture. It 
involves eight specific targets and thirteen indicators related to 
nutrition demands, sustainable food production, and national 
actions, for the purpose of guiding governmental regulations 
and establishing a sustainable food supply system that meets 
demands. 

Assessment of the indicators in SDG 2 is led by the Food and 
Agriculture Organization (FAO), World Health Organization 
(WHO) and United Nations International Children’s Emergency 
Fund (UNICEF). Data used in the assessment is mostly 
acquired through surveys and census by statistical departments 

of all countries. However, there has been a consensus that 
the traditional means for surveys and censuses is inadequate 
in terms of timeliness, spatial resolution, and costs. Earth 
observation technologies have innate advantages in monitoring 
indicators related to natural systems, such as food production 
and environmental impacts. Existing research has adopted Earth 
observation technologies for long-term monitoring of factors 
related to food production such as distribution of farmlands and 
grain yield. Such factors indirectly reflect, rather than directly 
assess, indicators related to SDG 2. 

The research focuses on Tier II indicator related to sustainable 
food production system estimation (Table 2-1), and builds 
up methodologies to monitor the spatiotemporal patterns of 
indicator and sub-indicator by integrating multidisciplinary 
models based on Big Earth Data. Methods are used to estimate 
the situations of SDG 2.4.1 for the purpose of supporting the 
establishment of a sustainable food supply system and realization 
of the goal of zero hunger.

Table 2-1. Focused SDG 2 indicator

Target Indicator Tier 

2.4 By 2030, ensure sustainable food production systems and implement resilient 
agricultural practices that increase productivity and production, that help maintain 
ecosystems, that strengthen capacity for adaptation to climate change, extreme 
weather, drought, flooding and other disasters, and that progressively improve land 
and soil quality.

2.4.1 Proportion of 
agricultural area under 
productive and sustainable 
agriculture.

Tier II



SDG 2 Zero Hunger

21

SDG 2
 

Contributions

Focusing on the difficulties in obtaining timely information on 
food production systems using surveys, this study promoted 
methodologies to estimate sub-indicators of SDG 2.4.1 by 
integrating multi-source data including remote sensing data, 
statistical data, and data from ground surveys. Methods were 

applied at national scale to create a data product to evaluate 
progress towards sustainable food production systems. This 
product provides a framework for comparison among regions, 
revealing sustainability problems and providing decision-making 
support (Table 2-2).

Table 2-2. Case and its contributions to SDG 2

Indicator Case Contributions

2.4.1 Proportion of agricultural 
area under productive and 
sustainable agriculture.

Assessing progress 
towards sustainable 
cropping systems: The 
case of China.

Method and model: Methodologies for assessing land productivity, 
irrigation water consumption, and excess fertilizer application by 
integrating multi-source data and multidisciplinary models.
Decision support: Reveal the progress of sustainable use of cropland 
in China and the driving forces, and propose suggestions on 
promoting sustainability of crop production systems.
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Case Study

Assessing progress towards sustainable cropping systems: The case of China

Developing agriculture to ensure long-term food supply 
contributing to economic and social development, while 
minimizing environmental impacts is at the heart of the 
challenge. Quantitatively assessing the sustainability of 
agricultural systems is therefore critical and requires spatial 
and temporal monitoring of three key aspects, economic, 

environmental, and social, and examining the interactions 
between them. This is a complex undertaking and requires 
innovative data infrastructure such as the Big Earth Data 
infrastructure that provides one of the best implementations to 
accomplish this task.

Scale: National
Study area: China

Target 2.4: By 2030, ensure sustainable food production systems and implement resilient agricultural practices that increase 
productivity and production, that help maintain ecosystems, that strengthen capacity for adaptation to climate change, 
extreme weather, drought, flooding, and other disasters, and that progressively improve land and soil quality.

Indicator 2.4.1: Proportion of agricultural area under productive and sustainable agriculture.

Method

By integrating remote sensing methodologies, spatial allocation 
models, global crop water models, and mass balance models, 
analysis estimates three sub-indicators of SDG 2.4.1—
land productivity, water use (represented by irrigation water 
consumption), and fertilizer pollution risk (represented by excess 
nitrogen and phosphorus)—for China from 1987 to 2015. The 
sub-indicators were calculated for a total of 14 major crops, over 
76% of the harvest area in China that accounts for about 87% of 
kilocalorie production in the region.

“Environmental intensity”—environmental impacts per 
kilocalorie produced—was used to develop a matrix to 
determine level of sustainability, to facilitate comparison among 
different agricultural zones and across indicators. Sustainability 
criteria were proposed according to the definition from the 
FAO’s metadata for SDG 2.4.1, which is based on two aspects: 
current state and trends. A decrease in intensity suggests a more 
sustainable level. The trends of each sub-indicator and the 
integrative patterns in terms of environmental intensity were 
estimated for the entire study area. 

Data used in this case

For this study the Big Earth Datasets are composed of the 
1:100,000 National Land use/cover Database of China based 
on Landsat, China-Brazil Earth Resources satellite (CBERS) 
and HJ-1 satellite data; MODIS time series vegetation index 
data; statistical data including national crop harvest area and 

yield, irrigation area, and fertilizer application; field survey data 
including pollution census data and agricultural census data; 
and information on crop phenology and fertilizer application 
rate obtained from literature.
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(b) 

(d) 

(c) 

(e) 

(a) 

Results and analysis

Figure 2-1. Spatial distribution of changes in crop kilocalorie production (a), cropland area (b), irrigation water (c), excess N use 
(d), and excess P use (e) from 1987 to 2015 in China. Inset plots indicate the changes in amount (A) and intensity (I) for these 
indicators in 1987, 2000, 2010, and 2015 (data for Taiwan Province is missing).
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Figure 2-2. High-standard cropland in Xinjiang Uygur Autonomous Region of China.

For the period of 1987-2015, about one quarter of croplands in China improved in efficiency in terms of land 
use, irrigation water consumption, and excess fertilizer application; since 2000, national average intensity 
of all three indicators decreased, indicating a more environmentally efficient cropping system in China.

Farm management explained >90% of the changes; meanwhile, land-use change primarily driven by 
urbanization challenged the trends. Coordinating land-use change and farm management are critical 
for delivering agricultural sustainability in China and other rapidly urbanizing regions of the world. 

The study found that from 1987-2015, environmental intensity 
for land use (-43%), irrigation water consumption (-30%), 
and excess N application (-24%) decreased whereas excess P 
application (+66%) increased. However, all indicators declined 
after 2000. Collectively, the intensity of all four indicators 
declined across 26% of cropland, meaning that these croplands 
had achieved at least an acceptable level of sustainability 
across the four indicators. Environmental intensity was found 
to have increased in only 3% of cropland for all four indicators 
collectively. Generally, regions with lower land intensity had 
greater improvement across all other indicators. Overall these 
results suggest that China’s food supply has become more 
environmentally efficient over time.

Recognizing drivers of change in sustainability helps develop 

future strategies. Analysis indicates that farm management 
expla ined >90% of  changes  in  crop product ion  and 
environmental impacts. Precision agricultural management, such 
as Science Technology Backyard platforms, has helped China’s 
cropping systems to become more sustainable. 

Meanwhile, nationwide loss of fertile cropland to urban 
expansion was offset by cropland expansion in arid and low-
productivity northern regions, where land and irrigation water 
intensity were much higher than the national average. Continued 
spatial redistribution of croplands, which was already observed, 
may further challenge China’s food security. Coordinating land-
use change and farm management are thus critical for delivering 
agricultural sustainability in China, and also other rapidly 
urbanizing regions of the world.

Outlook

Applying the above methodologies in other countries can help 
to gradually improve the efficiency of their productivity and 
move towards a more sustainable cropping system.

Further employing Earth observation technology in the 
estimation of other sub-indicators, and exploring methodologies 
for fusing social and economic data with Earth observation data, 
will help develop mechanisms to coordinate different sources of 

data in the estimation. 

Exploring interconnections between SDG 2.4.1 and other 
indicators particularly in SDG 6, SDG 11, SDG 13, will provide 
improved understanding of how different goals influence each 
other and provide valuable insights on underlying factors 
locally, helping to promote region-specific strategies towards 
sustainability and to support decision making.

Highlights
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Conclusions

Sustainable food production systems are critical for achieving 
SDG 2. Earth observation technologies have unique advantages 
in monitoring food production systems, for measuring 
distribution of agricultural production, food yield and 
fluctuations, as well as understanding environmental impacts on 
agricultural production. The high temporal and spatial resolution 
of Earth observation data coupled with data from statistical 
surveys and other economic and social data provide progressive 
monitoring and evaluation of indicators to facilitate actions and 
decisions towards sustainable agriculture. 

The research focuses on Tier II indicator related to sustainable 
food supply in SDG 2, namely SDG 2.4.1. The case study 
presented in this report propose methods to evaluate indicator 
and sub-indicator by integrating multi-source data, to improve 
the monitoring and assessment of sustainability in China. 

The estimation of sub-indicators of productive and sustainable 
agriculture shows that environmental intensity (land use, 
irrigation water consumption, and excess fertilizer application) 
in China has been declining since 2000, indicating a movement 
towards a more sustainable cropping system. Meanwhile, 
nationwide cropland displacement from high-quality lands to 
marginal ones primarily driven by urbanization challenged 

this trend. Farm management and land-use planning must be 
coordinated to further deliver a sustainable food supply in China 
and other urbanizing regions.

This report  proposes some key areas,  problems,  and 
countermeasures for a sustainable food production system for 
achieving SDG 2. 

In the future, the research will: 

(1) Make full use of the current international linkages and 
collaboration networks to cooperate with international 
organizations and third-party organizations to strengthen the 
application of Big Earth Data in SDG 2, establish a mechanism 
for data sharing and technology promotion, and advance the 
work of indicator evaluations in developing countries with 
serious food problems and relatively poor technical forces.

(2) Focus on key issues of the global food production system 
including small-scale producers and productive, sustainable 
agriculture; examine interactions between SDG 2 and SDG 13; 
address challenges to food security due to changing climate; and 
provide decision making support to achieve global food security 
within a changing world.
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Water is a key resource for sustaining life on this planet and 
clean water is essential for the development of human society. A 
significant portion of the human population still lacks access to 
clean drinking water. SDG 6 defines an important goal for global 
sustainable development, proposing eight targets and eleven 
indicators, including water resources, water environment, water 
ecology, and international cooperation related to water. UN-
Water, WHO, and other international organizations have jointly 
implemented the Integrated Monitoring of Water and Sanitation 
Related SDG Targets program for SDG 6 indicators. 

Data is the biggest bottleneck that restricts monitoring of the 
SDG 6 indicators. There are five Tier II indicators among the 
eleven specific indicators for SDG 6 that have clear methods 
but lack relevant data sources. The evaluation methods 
recommended in the metadata documents and assessment 
reports for SDG 6 indicators are mainly based on statistical and 
census data. These methods are limited by the cost and cycle 
of sampling surveys, which results in limited spatiotemporal 

resolution. Additionally, differences in statistical systems and 
methods among different countries create consistency issues, 
making evaluation of these indicators challenging at global 
scales. 

These limitations call for innovative evaluation methods to both 
improve spatiotemporal accuracies of indicators and provide 
multi-scale perspectives. This is only possible by diversifying 
data sources. Big Earth Data therefore becomes highly relevant 
for indicator evaluation.

Presently, a large number of applications utilize satellite remote 
sensing data and data from ground observations to monitor 
indicators related to various aspects of water quality and water 
ecological environments. For example, large-scale dynamic 
monitoring for indicator SDG 6.3.2 is performed by measuring 
the chlorophyll content in lakes and large reservoirs through 
remote sensing data. Moreover, this method is coupled with 
analysis of samples to determine water quality changes.

Table 3-1. Focused SDG 6 indicator

Target Indicator Tier

6.3 By 2030, improve water quality by reducing pollution, eliminating dumping 
and minimizing release of hazardous chemicals and materials, halving the 
proportion of untreated wastewater and substantially increasing global recycling 
and safe reuse.

6.3.2 Proportion of bodies of 
water with good ambient water 
quality.

Tier II

Background
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Big Earth Data was employed in a supporting role for the 
realization of SDG 6 targets. SDG 6.3.2 was monitored at a 
high resolution by using Internet data, statistics, and other data 

sources. This was also accomplished using spatiotemporal data 
fusion method.

Table 3-2. Case and its contributions to SDG 6

Indicator Case Contributions

6.3.2 Proportion of bodies 
of water with good ambient 
water quality.

Analysis of surface water 
quality in China.

Data product: The proportion of good ambient water quality at 
provincial levels in China in 2016 and 2017.

Contributions
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Analysis of surface water quality in China

Surface water quality is important for both human consumption 
and maintaining a healthy and functioning ecosystem. Pollution 
is one of the main causes of water quality degradation in 
surface water bodies throughout the world. The rapid economic 
development in China during the past 40 years has considerably 
increased the amount of pollutants released into water bodies. 
The Chinese government has made a considerable effort to 
improve water quality. The Central Government of China has 
developed national standards for surface water environmental 
quality, and established a water quality monitoring network 

covering all major river basins across the country. The national 
standard identifies 24 main indicators, which also provide the 
basis for the SDG 6.3.2 indicator proposed by UN-Water. This 
case study focuses on the water quality of major rivers, lakes, 
and reservoirs, and uses data collected from national monitoring 
networks accessible from their website. Herein, a statistical 
spatial index of surface water quality was developed for China 
at provincial and municipal scales. 

Scale: National
Study area: China

◎ Observation data for surface water quality is issued online by 
environmental protection monitoring departments administered 

by provinces and municipalities.

The above methodology was employed to calculate the 
proportion of each category of surface water for provincial and 
municipal administrative units in China during the 2016 and 
2017 period. The proportions of water bodies with good ambient 
water quality in China was 67.8% in 2016. The proportion of 

Class I, II, III, IV, V, and inferior V water bodies was 2.4%, 
37.5%, 27.9%, 16.8%, 6.9%, and 8.6%, respectively, with 
Class II and III in the majority. The number rose to 67.9% in 
2017, and the proportion of inferior V water bodies decreased 
by 0.3% compared to 2016, suggesting that the water quality 

Surface water quality is classified into six categories by 
Environmental Quality Standards for Surface Water (GB3838-
2002). Classes III, II, and I represent progressively higher classes 
for surface water quality. The water quality data was collected 
online from websites administered by local environmental 

protection departments, where the observation data is regularly 
updated. An index was calculated by determining the proportion 
of water bodies for each water quality class within sub-national 
administrative boundaries.

Target 6.3: By 2030, improve water quality by reducing pollution, eliminating dumping, and minimizing release of 
hazardous chemicals and materials, halving the proportion of untreated wastewater, and substantially increasing 
recycling and safe reuse globally.

Indicator 6.3.2: Proportion of bodies of water with good ambient water quality.

Method

Data used in the case

Results and analysis

Case Study
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Figure 3-1. Proportion index for water quality at provincial scales in China in 2016 and 2017.

In 2016 and 2017, the proportion of bodies of surface water with good ambient water quality in China 
were 67.8% and 67.9% , respectively.

The surface water quality in China’s western region was superior compared to the central and eastern 
regions.

Outlook

The monitoring result will be updated each year. A more 
comprehensive analysis is being planned by adding data from 
2018 to 2020. This will allow for estimation of high surface 
water quality trends for ambient water quality.

A comparative analysis of water quality monitoring standards 

is also being designed for other countries and regions. This is 
necessary to explore the feasibility of using networks to acquire 
observation data for surface water quality analysis. This will 
allow for additional applications in countries and regions that 
maintain a water quality database.

Highlights

 (a) 2016                                                                                                             (b) 2017

has improved. Spatially, the surface water quality in the 
western region of China was superior compared to the central 
and eastern regions. The Xinjiang Uygur Autonomous Region 
and Tibet Autonomous Region maintained the highest surface 
water quality during the 2016 and 2017 periods. After years 

of centralized treatment, the quality of surface water in China 
is observed to be gradually improving. However, there is still 
much work to be completed in water pollution control, such as 
differentiated governance and investigating pollution sources.
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Rapid and accurate monitoring of SDG 6 indicators represents 
an important foundation for providing and managing sustainable 
water sources and sanitation. Currently, there are suggested 
calculation methods for all eleven indicators in SDG 6. Current 
and future work will focus on examining existing calculation 
methods that use multi-source data integration. This is necessary 
to obtain spatiotemporally continuous data to meet the 
requirements for monitoring and evaluation.

The Big Earth Data framework has numerous advantages in 
spatiotemporal resolution, accessibility, and accuracy compared 
with traditional statistical data. The application of Big Earth 
Data methods, represented by satellite remote sensing and 
mobile Internet data, has comprehensively improved the spatial 
accuracy, sampling density, and frequency of SDG 6 indicators. 
Moreover, this methodology has improved the temporal 
resolution and accuracy of evaluation results.

The SDG 6 cases selected in this report suggest that Big Earth 
Data plays an important role in improving the monitoring 
capability of SDG indicators. However, these results also expose 
the issues associated with spatiotemporally continuous data 

acquisition, and multi-source heterogeneous data matching. 
There is also a discrepancy in the connection between 
independent monitoring and evaluation results and the actual 
needs of the local government management department. In view 
of this, it is advisable to continue in-depth work in the following 
areas in the future.

(1) There is a need to strengthen data collection and processing, 
develop universal analysis methods, and standardize processing 
and modules. Moreover, future work should realize seamless 
connection and simplification of applications for data from big 
networks, remote sensing, and statistical surveys. This will aid 
in realizing continuity and sustainability for monitoring and 
evaluating all indicators.

(2) Future studies should also aim to promote extensive and 
in-depth cooperation with international, national, and social 
organizations. Technical methods and systems should be applied 
to aid in promoting the global realization of SDG 6, especially 
in the countries and regions involved in the joint construction of 
the Belt and Road.

Conclusions
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Sanjiang Plain Wetland, China
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According to UN statistics, the proportion of the global urban 
population has increased from less than 30% in 1950 to 55% in 
2018 and is expected to rise to 68% by 2050. In 2016, more than 
one billion people lived in slums or informal settlements, more 
than half of whom (589 million) were in East Asia, Southeast 
Asia, Central Asia, and South Asia. Although over 75% of 
global gross domestic product (GDP) is generated from urban 
areas, they account for 60-80% of energy consumption and 
75% of carbon emissions. Rapid urbanization poses enormous 
challenges to humanity and results in an increasing number 
of slum dwellers due to housing shortages, traffic congestion, 
increased air pollution and sewage, inadequate freshwater 
supply, waste generation, and inadequate basic services and 
infrastructure. Unplanned urban expansion renders cities 

particularly vulnerable to climate change and natural disasters.

SDG 11 was created as a response to the above issues and 
aims to make cities and human settlements inclusive, safe, 
resilient, and sustainable. SDG 11 includes seven targets for 
technology, three targets for cooperation, and a total of 15 
indicators. Cities are one of the most challenging areas for 
sustainable development. Domestic and overseas studies have 
shown that Big Earth Data technology has great potential and 
benefits in providing updated Earth surface information with 
good spatiotemporal resolution, accessibility, and accuracy. This 
section focuses on 5 of the 15 indicators for SDG 11 using the 
Big Earth Data approach, and includes: urban public transport, 
urbanization, cultural and natural heritage, PM2.5, and urban 
public space (Table 4-1).

Table 4-1. Focused SDG 11 indicators

Target Indicator Tier 

11.2 By 2030, provide access to safe, affordable, 
accessible, and sustainable transport systems for all. 
Improve road safety by expanding public transport 
with special attention to the needs of those in 
vulnerable situations, such as women, children, the 
elderly, and persons with disabilities.

11.2.1 Proportion of the population that has convenient 
access to public transport, by sex, age, and persons with 
disabilities.

Tier II

11.3 By 2030, enhance inclusive and sustainable 
urbanization and the capacity for participatory, 
integrated, and sustainable human settlement planning 
and management in all countries.

11.3.1 Ratio of land consumption rate to population 
growth rate. Tier II

11.4 Strengthen efforts to protect and safeguard the 
world’s cultural and natural heritage.

11.4.1 Total expenditure (public and private) per capita 
spent on the preservation, protection, and conservation 
of all cultural and natural heritage, by type of heritage 
(cultural, natural, mixed and World Heritage Centre 
designation), level of government (national, regional 
and local/municipal), type of expenditure (operating 
expenditure/investment) and the type of private funding 
(donations in kind, private non-profit sector and 
sponsorship).

Tier III

11.6 By 2030, reduce the adverse per capita 
environmental impact of cities, including assessing air 
quality and municipal and other waste management.

11.6.2 Annual mean levels of fine particulate matter (e.g., 
PM2.5 and PM10) in cities (population weighted). Tier I

11.7 By 2030, provide universal access to safe, 
inclusive, and accessible, green and public spaces, 
particularly for women and children, the elderly, and 
persons with disabilities.

11.7.1 Average share of the built-up area of cities that is 
open for public use to citizens regardless of sex or age, and 
to persons with disabilities.

Tier II

Background
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The research mainly monitors and evaluates five indicators (Table 
4-1) for SDG 11 at national scale. It provides access to Chinese 
data products, methodological models, and decision support for 

monitoring SDG 11 indicators. Detailed information is provided 
in Table 4-2.

Table 4-2. Cases and their contributions to SDG 11

Indicator Case Contributions

11.2.1 Proportion of the population 
that has convenient access to public 
transport, by sex, age, and persons 
with disabilities.

Proportion of 
the population 
with easy 
access to public 
transportation in 
China.

Data product: China’s regional public transport information data.
Method and model: A simple indicator accounting method is proposed 
to provide experience and reference for other countries to evaluate 
and compare the same indicators.
Decision support: Provide data support for comprehensive evaluation 
of sustainable urban development at the national scale in China.

11.3.1 Ratio of land consumption rate 
to population growth rate.

Monitoring 
and assessing 
urbanization 
progress in China.

Data product: Global 10-meter resolution high-precision spatial 
distribution information for urban impervious surfaces in 2015 (the 
base year for SDGs). 
Method and model: A method is proposed for rapidly extracting the 
information for global urban impervious surfaces using multi-source, 
ascending/descending orbits, multi-temporal SAR and optical data 
combined with texture and phenological characteristics. China’s 
localized practices are evaluated for SDG 11.
Decision support: Decision support is provided for comprehensive 
evaluation of sustainable urban development at the national scale in 
China.

11.4.1 Total expenditure (public 
and private) per capita spent on 
the preservation, protection, and 
conservation of all cultural and 
natural heritage, by the type of 
heritage (cultural, natural, mixed, and 
World Heritage Centre designation), 
the level of government (national, 
regional, and local/municipal), 
the type of expenditure (operating 
expenditure/investment) and the type 
of private funding (donations in kind, 
and private non-profit sector and 
sponsorship).

Preliminary study 
and suggestions 
for modifying 
indicator SDG 
11.4.1.

Data product: Statistical data of “total per capita expenditure” and 
“expenditure per unit area” of national scenic spots in eastern, central 
and western China; 25-year time series datasets on the Huangshan 
World Heritage Site Remote Sensing Ecological Index (RSEI).
Method and model: A method concerning “increasing the capital 
investment per unit area to preserve and protect world cultural and 
natural heritage” is proposed.

11.6.2 Annual mean levels of fine 
particulate matter (e.g., PM2.5 and 
PM10) in cities (population weighted).

Monitoring and 
analyzing fine 
particulate matter 
(PM2.5) in China.

Data product: China’s 2010-2018 annual average PM2.5 products.

11.7.1 Average share of the built-
up area of cities that is considered 
as open space for public use by all 
citizens, regardless of sex, age, or 
disability.

Proportion of 
urban open public 
space in China.

Data product: Area indicator evaluation datasets for urban built-up 
areas in China.
Method and model: A simple indicator accounting method is proposed 
to provide experience and reference for other countries to evaluate 
and internationally compare the same indicators.
Decision support: Data support is provided for comprehensive 
evaluation of sustainable urban development at the national scale in 
China.

Contributions
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Proportion of the population with easy access to public transportation 
in China

Public transportation is an essential lifeline for citizens that 
guarantees movement of people and goods and contributes 
to the economic productivity of urban centers and ensures 
proper functioning of the city. It plays an important role in 
promoting the development of various industries, the prosperity 
of economic and cultural activities, and contact between 
urban and rural areas. A good urban public transportation 
system is synonymous with economic growth and quality of 

life in many cities. Moreover, public transportation is a key 
factor for achieving most SDGs, especially those related to 
education, food security, health, energy, infrastructure, and the 
environment. However, it is difficult to acquire information and 
quantify public transportation networks within the complex 
urban space. Big Earth Data provides a viable solution to the 
challenges of acquiring and processing the information gathered 
from complex environments.

Scale: National
Study area: China

◎ National public transportation network vector map (2015). 
◎ National 100-meter resolution land use data. 
◎ National 1-kilometer resolution population distribution product. 

The SDG 11.2.1 indicator method extracts public transport 
(transit, subway) station data based on the national public 
transportation network vector map. This method involves the 
creation of 500 m buffers, which are then overlapped with high 
spatiotemporal resolution population products to calculate 

the proportion of the population covered by the buffer in the 
kilometer grid. Finally, the proportion of the population that has 
easy access to public transportation within the urban built-up 
area is calculated based on spatial data.

Target 11.2: By 2030, provide safe, affordable, accessible, and sustainable transportation systems for all, improve 
road safety, especially to expand public transportation. Special attention should be paid to the needs of vulnerable 
people, women, children, the disabled and the elderly.

Indicator 11.2.1: Proportion of the population with easy access to public transportation, classified by age, sex, and disability.

Method

Data used in this case

Case Study

The population coverage within 500 m of public transportation 
stations in the following provinces (excluding Taiwan Province) 
was analyzed using public transport station and population 

kilometer grid products for prefecture-level cities across 
the country. Overall, the proportion of the population with 
convenient access to public transportation at the provincial level 

Results and analysis
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was 64.28% on average. Moreover, the proportions in eastern provinces were generally higher than those in the central and western 
provinces. The proportions in the southern provinces were also generally higher than in the northern provinces. Macao, Shanghai, 
and Hong Kong reached 100%, and the 
500 m buffer for traffic stations covered 
the entire population in the built-
up area. Beijing, Tianjin, Zhejiang, 
Fujian, Sichuan, Jiangsu, Guangdong, 
Chongqing ,  L iaoning ,  Guangxi , 
Hunan, Anhui, Shaanxi, Qinghai, 
Jiangxi, and Guizhou featured higher 
percentages compared to the national 
average. There were 14 provinces that 
featured percentages below the national 
average: Shandong, Hebei, Hainan, 
Hubei, Shanxi, Jilin, Heilongjiang, 
Henan, Ningxia, Yunnan, Gansu, Tibet, 
Xinjiang, and Inner Mongolia.

Figure 4-2. Proportion of the population in prefecture-level cities with easy access to public transportation (data 
for Taiwan Province is missing).

Figure 4-1. Proportion of the population with easy access to public transportation in 
each province (data for Taiwan Province is missing).
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The proportion of the population with convenient access to public transportation at the provincial 
level was 64.28% on average. This proportion was observed to be generally higher in eastern 
provinces compared to the central and western provinces. Moreover, the southern provinces generally 
had a greater degree of transportation access compared to the northern provinces.

At the prefecture-level city scale, the proportion of the population having easy access to public 
transportation in densely populated cities was generally higher than in sparsely populated cities. 
Moreover, the number of people with transportation access was generally greater in provincial 
capitals in comparison to other non-provincial capitals.

Outlook

The calculation method adopted by this indicator is simple, and 
navigation and land use data are easy to obtain. This type of 
analysis allows for other countries to follow and monitor the 
indicator, which can be used for global comparison.

The bus line network vector dataset can be dynamically updated 
as needed. The land use products are updated every 3 to 5 years, 
which meets the requirements for future high spatiotemporal 

resolution evaluation.

The population data used herein is not yet available for 
classification by age, sex, and disability. The next step is to 
develop a spatial population dataset for different groups using 
big data gathered from mobile phone platforms and Internet 
sources. This is necessary to provide improved support for 
indicator monitoring and evaluation.

At the prefecture-level city scale, the number of people that 
have easy access to public transportation in densely populated 
cities is generally higher than in sparsely populated cities. 
Furthermore, the population in provincial capitals with access 
to transportation is generally higher than other non-provincial 

capitals. In some northwestern cities, the number of people with 
easy access to public transportation is relatively high due to the 
high urban population density and their distribution along urban 
roads.

Highlights
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Monitoring and assessing urbanization progress in China

The most notable features of urbanization include urban 
expansion and demographic change. A large amount of 
land resources are lost due to rapid urbanization. These lost 
resources have great societal, economic, and environmental 
value. Additionally, the physical growth of urban areas is often 
disproportionate in relation to population growth, resulting in 
low land use efficiency. Therefore, it is important to understand 
and coordinate human-land relationships by acquiring 
information on both urban land consumption and population 
growth. This is necessary to effectively monitor and assess the 
urbanization process. The SDG 11.3.1 indicator is defined as the 
ratio of land consumption rate (LCR) to population growth rate 
(PGR) and is used to describe the relationship between urban 

expansion and demographics.

This indicator involves a focus on the following factors. (1) 
Global high-resolution urban land mapping is used to precisely 
delineate the urban footprint, which provides data support for 
monitoring and evaluating SDG 11.3.1. (2) There is a focus 
on quantitatively assessing the relationship between LCR and 
PGR for 340 prefecture-level cities in China. Furthermore, 
the sustainable development of Chinese cities is assessed on 
a national scale. This research is significant for providing 
spatial data and decision support for SDG 11 urban sustainable 
development.

Scale: National
Study area: China

The ratio between urban LCR and PGR is based on the SDG 
indicator framework and is calculated as the following.

(1) LCR is calculated as:

where Urbt is the total extent of the urban agglomeration in km2 
for the past/initial year, Urbt+n refers to the total extent of urban 
agglomeration in km2 for the current year, and y expresses the 
number of years between the two measurement periods.

In urban remote sensing, scientists have discovered that urban 
impervious surfaces extracted from remote sensing images 
can accurately reflect urban surface information and land use 
intensity. In this case, the urban impervious surface is extracted 
from multi-temporal Landsat TM/ETM+ imagery acquired from 
1990 to 2010. In this study, an effective urban land extraction 
method was proposed for the 2015 product using ascending/
descending orbits of Sentinel-1A synthetic aperture radar 
(SAR) data and Sentinel-2 multispectral instrument optical data 
acquired from January 1, 2015, to June 30, 2016. The method 
includes an assessment of textural and phenological features.

(2) PGR is calculated as:

where Popt is the total population within the city in the past/
initial year, Popt+n refers to the total population within the city 
in the current/final year, and y expresses the number of years 
between the two measurement periods.

In China, the population spatialization method is used to obtain 
the spatial distribution for population. Firstly, nine independent 
variables related to population are constructed using land use 
data and Defense Meteorological Satellite Program (DMSP) 
and Operational Linescan System (OLS) nighttime light 
data. Secondly, geographically weighted regression is used to 
construct a population spatialization model. Lastly, a gridded 
population distribution is acquired with a spatial resolution of 
1×1 km. 

(3) The ratio of LCR to PGR (LCRPGR) is estimated as follows:

Target 11.3: By 2030, enhance inclusive and sustainable urbanization and capacity for participatory, integrated, and 
sustainable human settlement planning and management in all countries.

Indicator 11.3.1: Ratio of land consumption rate to population growth rate.

Method
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Figure 4-3. Global 10-meter resolution urban impervious surface distribution (2015).

◎ Ascending/descending orbits of Sentinel-1A SAR data 
(150,000 scenes) and Sentinel-2A optical data (340,000 scenes). 
Data is acquired for the dates ranging from January 1, 2015, to 
June 30, 2016. The data also includes Landsat imagery acquired 
from 1990 to 2010, and DMSP/OLS nighttime light data 
acquired in 1992, 2000, and 2010. Lastly, data relating to the 
Shuttle Radar Topography Mission (SRTM) and the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer 
(ASTER) Digital Elevation Model (DEM) are also included.

◎ Land use/land cover data with 30-meter spatial resolution 
acquired in 1990, 2000, and 2010.

◎ The fourth, fifth, and sixth China Census data (county level) 
as well as UN city population data.

Under the SDG indicator framework, based on the methods for 
calculating SDG indicator 11.3.1, the research result illustrates 
the urbanization progress of China from one perspective.

(1) High-resolution global urban impervious surface mapping

Figure 4-3 displays the global 10-meter resolution urban 
impervious surface distribution. The product results were 
compared with other urban land products, such as the Global 
Human Settlement Layer (GHSL), global land cover datasets 
at a 30-meter resolution (GlobeLand30), National Land Cover 
Database (NLCD), and CORINE Land Cover (CLC). In 
comparison with other methods, the product featured in this 
case was generated through fusion of optical and SAR data. 
The results reveal that the product provided a high correlation 
coefficient (R2>0.80) and high accuracy with an overall accuracy 
(OA) greater than 86%, a user accuracy (UA) greater than 82%, 
and a product accuracy (PA) greater than 90% at the global 
scale. 

The method presented in this case has numerous advantages. 1) 
The method effectively resolves some limitations and problems 
for extracting impervious surfaces from single data sources 
and further improves extraction accuracy. 2) The method 
employs Big Earth Data processing technology and is based 
on different sensors (e.g., SAR and optics) and imaging modes 
(e.g., ascending/descending orbits). The method also employs 
150,000 Sentinel-1A (S1) and 340,000 Sentinel-2 (S2) images. 
3) The method achieves rapid fully automated urban impervious 
surface extraction. 4) Lastly, the methodology is useful for 
identifying human settlements located in low latitude areas.

(2) Analysis of China’s urban expansion and population 
migration

LCR, PGR, and LCRPGR were calculated for 340 prefecture-
level cities in China during 1990-2000 and 2000-2010 to 
monitor the progress of SDG 11.3.1 (Figure 4-4). Results from 
monitoring the SDG 11.3.1 indicator in China reveal that the 

Data used in this case

Results and analysis
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Figure 4-4. Spatial distribution of SDG 11.3.1 at 342 prefecture-level cities in China during 1990-2000 and 2000-2010.

ratio between LCR to PGR increased from 1.41 in 1990-2000 
to 1.94 in 2000-2010. Therefore, compared with 1990-2000, 
the growth rate of built-up areas in 2000-2010 was faster than 
the rate of population growth. Additionally, it also found cities 

with higher LCRPGR (LCRPGR>3), including 19 cities in 
1990-2000, and 47 in 2000-2010. These results suggest that the 
expansion of urban space in these cities needs to be effectively 
controlled.

The case product is observed to feature high accuracy, with OA values greater than 86%. Therefore, 
the proposed method and the high-precision, high-resolution, global urban impervious remote 
sensing product can provide spatial data and decision support for the 2030 Agenda for Sustainable 
Development.

The growth rate of built-up areas in 2000-2010 was faster than the population growth in 1990-2000. 
Higher LCRPGR values (LCRPGR>3) were observed in 1990-2000. There were 19 cities in 1990-2000, 
and 47 cities in 2000-2010. Results suggest that the expansion of urban space in these cities needs to 
be effectively controlled.

Highlights

Outlook

Future work will focus on measuring and monitoring the SDG 
11.3.1 indicator and “LCRPGR” values for 1,860 cities with 
populations greater than 300,000 at the global scale. In the 
future, other urbanization indicators will be integrated to assess 
the overall progress and trend of urbanization. In addition, 
combined with the economic and environmental data of these 
cities, more comprehensive spatiotemporal monitoring of urban 
sustainable development will be conducted using Big Earth 
Data.

SDG 11 is directly related to at least 11 other SDGs. About one-
third of all SDG indicators can be measured at the city level, 

making cities an important unit for measuring, monitoring, and 
tracking SDG progress. Future work will include cross-over and 
comprehensive assessment studies between SDG 11 and other 
SDGs.

Global urban impervious surface products can aid developing 
countries that do not have the technical and financial resources 
to monitor their urban development. These products will enable 
developing countries to describe the relationship between land 
use and PGR in urban environments. The high-resolution global 
urban impervious layer data will be updated every three years.
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(1) The method involves the calculation of capital investment 
per unit area. The investment per unit area in the protected area 
reflects the protection intensity of a country or a single world 
heritage site. This is given as:

where the total expenditure per unit area (TEPUA) is the 
total expenditure (public and private) per unit area on the 
preservation, protection, and conservation of all cultural and 
natural heritage. The public expenditure (PuE) is the expenditure 
for the preservation and conservation of cultural and natural 
heritage by government departments at all levels. The private 
expenditure (PrE) is the private expenditure for the preservation, 
protection, and conservation of cultural and natural heritage. 
Area (A) is the total area for the regional protection area.

(2) The method involves a calculation of RSEI, which is used to 
measure changes in the ecological environment, and its formula 

is given as:

RSEI=1- PCA (f (NDVI, WET, NDSI, LST))

where PCA refers to principal component analysis, NDVI is the 
normalized difference vegetation index, WET is the wetness 
component of the tasseled cap transformation, NDSI is the 
normalized difference soil index, and LST is the land surface 
temperature. Together they represent greenness, humidity, 
dryness, and heat.

(3) The case methodology also incorporates a sample selection 
method. China’s national parks have a strong management 
system. The current management model for natural and 
cultural heritage has evolved from the original national park 
management model and there are similarities between the two 
management systems. This project calculated and summarized 
capital investment with the aid of geographic information system 
methods and technologies. The calculation involved income and 
expenditure statistics and area data for 244 national parks from 

Preliminary study and suggestions for modifying indicator SDG 11.4.1

The UN has proposed to “strengthen efforts to protect and 
safeguard the world’s cultural and natural heritage” per SDG 
11.4. An indicator has been provided to accomplish this goal, 
which is described as “the total expenditure per capita (public 
and private)”. International cultural and natural heritage sites 
are distributed throughout the world in different countries with 
diverse cultural backgrounds and different levels of economic 
development. This variance in conditions and culture between 
different countries makes it difficult to use indicator SDG 
11.4.1 since the measurement depends on localized factors. The 
amount of total expenditure per capita in a country is related to 
factors such as: (1) the total number of all cultural and natural 
heritage sites in the country and its total area, (2) the funding 
invested in each cultural or natural heritage site, and (3) the 

population of each country. This case study proposes a method 
that uses in-depth interpretation of the evaluation target system, 
convenient access to reliable data, and compliance with actual 
measures to measure capital investment, especially for natural 
and mixed heritage sites. This value can be calculated from 
the expenditure per unit area of the heritage site. Per unit area 
investment = total capital investment / area of heritage site (km2 
or ha). The calculation results can be used to measure “increased 
capital investment”. It is recommended that the indicators given 
in SDG 11.4 be summarized as a new indicator, SDG 11.4.1. 
This new indicator can be described as the “increase in capital 
investment per unit area to protect and safeguard the world’s 
cultural and natural heritage”.

Scale: National
Study area: China

Target 11.4: Strengthen efforts to protect and safeguard the world’s cultural and natural heritage.

Indicator 11.4.1: Total expenditure (public and private) per capita spent on the preservation, protection, and conservation of 
all cultural and natural heritage, by type of heritage (cultural, natural, mixed, and World Heritage Centre designation), level of 
government (national, regional, and local/municipal), type of expenditure (operating expenditure/investment) and type of private 
funding (donations in kind, private non-profit sector and sponsorship).Method

Method
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2006 to 2017. The aim was to discuss the measurability and 
operability of the indicator for specific cases.

(4) The method also included an analysis of the relationship 
between capital investment and the ecological environment. A 

typical case in Huangshan was used as a demonstration. This 
case also compared the TEPUA curve with the RSEI curve and 
analyzed the relationship between capital investment and the 
ecological environment.

A total of 244 national parks in China were selected as study 
areas, and these were divided into eastern, central, and western 
regions. The per capita expenditure and unit area expenditure 
were then calculated and compared for each district (Figure 4-5; 
Figure 4-6).

According to Figure 4-6, the average unit area investment in 
China was observed to increase annually. The total expenditure 
per square kilometer of China’s national parks increased 
from ¥250,000 RMB in 2006 to ¥650,000 RMB in 2017. The 
investment in the eastern and central region was higher than 

in the western region. According to Figure 4-5, per capita 
investment was significantly higher in the west than in the 
eastern region after 2012. The amount of capital investment 
in the eastern region was much higher than in the western 
region, and the population density in the west was much lower 
compared to the eastern region. However, Figure 4-5 reveals 
that the per capita investment in the west was higher than in the 
east. Therefore, it was more reasonable to measure the strength 
of protection using “investment per unit area” rather than “total 
expenditure per capita”.

Figure 4-5. Statistics for the per capita expenditure of China’s 
national parks.

Figure 4-6. Statistics for the per unit area expenditure of 
China’s national parks.

Data used in the case

Results and analysis

For example, Huangshan was listed in the World Heritage List 
in 1990. Huangshan Mountain has three laurels, including: The 
World Cultural and Natural Heritage Site, the World Geopark, 
and the World Biosphere Conservation. A typical analysis 
was performed to assess the protection intensity and capital 

investment of the site. Figure 4-7 displays a distribution map of 
the Huangshan RSEI from 1992 to 2017.

Figure 4-8 reflects the changes in resource conservation 
investment and the ecological environment in Huangshan over 

◎ Statistics for revenue and expenditure, area, and tourist 
volume for 244 national parks in China from 2006 to 2017.

◎ Vector data for 244 national parks and the World Heritage of 
China.

◎ Income and expenditure data for Huangshan from 1992 to 
2017.

◎ Landsat series satellite image data from 1992 to 2017. 
GF series remote sensing data and ground survey data for 
Huangshan.
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Figure 4-7. RSEI for the Huangshan Scenic Area (1992-2017).
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the past 25 years. An analysis of Figure 4-8 reveals that the two 
trends are consistent. In general, the ecological environment 
in the Huangshan Scenic Area was observed to improve due 
to the increase in resource conservation investment. Resource 
protection accounted for 23% of the proportion of expenditures 
for different projects in Huangshan from 1990 to 2017. This 
factor played a powerful role in protecting the ecological 
environment of the heritage site.

It is more reasonable to measure the strength of protection by “investment per unit area” rather than 
“total expenditure per capita”.

The ecological environment in the Huangshan Scenic Area was observed to improve due to the 
increase in resource conservation investment. This case demonstrates the importance of investing in 
resource conservation measures.

Outlook

Currently, there is an urgent need to establish a scoring standard 
(e.g., 0-5) for investment per unit area at the global scale to 
measure the strength of capital investment. The “total expenditure 
per unit area” of heritage sites can more scientifically 
and reasonably reflect the protection efforts of “increased 
investment” on world heritage sites in comparison with the “total 
expenditure per capita” method. However, different countries, 
regions, and heritage sites may require different input funds in 
order to measure the total expenditure per unit area. There is a 
need to consider the issue from a global perspective, beginning 
with the “interference minimization principle” of world heritage 
sites. A guideline or scoring standard can be established for 
investment per unit area to measure the strength of capital 
investment.

Direct and universal indicators are needed to measure the 
effect of investment on heritage site protection. In this case, 
the Huangshan World Heritage Site in China was used as 
an example. RSEI revealed that the ecological environment 
in Huangshan Reserve had improved due to the increased 
investment in resource conservation. However, this is only 
one example. A determination of whether the quantitative 
relationship between capital investment and ecological 
environment can be measured by the RSEI will require a 
comprehensive study of several additional cases. This can 
be accomplished through international cooperation, and the 
establishment of a sharing mechanism for statistical data.

Highlights

Figure 4-8. Changes in resource conservation input and 
RSEI for the Huangshan Scenic Area (the dotted line is 
the actual value and does not participate in the moving 
average).
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Monitoring and analyzing fine particulate matter (PM2.5) in China

Fine particulate matter (PM2.5) is a primary air pollutant in 
China that is responsible for negatively impacting the health of 
local populations. Since 2012, several national environmental 
protection departments have paid close attention to the 
spread of PM2.5. Additional ground-measurement stations are 
constructed on an annual basis for monitoring the pollutant. 
The historical data on this pollutant is also lacking and is 

difficult to obtain; therefore, it is difficult to conduct any study 
on the epidemiological and health effects of fine particles. 

Satellite remote sensing has the advantages of long-term time 
series data and broad spatial coverage, which can compensate 
for the lack of site observations. Remote sensing imagery has 
been widely used by scientists to estimate the concentration of 
PM2.5.

Scale: National
Study area: China

Target 11.6: By 2030, reduce the adverse per capita environmental impact of cities, including assessing air quality and 
municipal and other waste management.

Indicator 11.6.2: Annual mean levels of fine particulate matter (e.g., PM2.5 and PM10) in cities (population weighted).

Method

Many methods have improved the estimation of PM2.5 using 
Aerosol Optical Depth (AOD). These methods employ different 
characteristics to obtain historical PM2.5 concentrations, which 
have applications in the evaluation of public health risks. The 
objective of this study was to analyze the changes of PM2.5 in 
key cities in China in recent years. This was accomplished by 
calculating the average annual concentration of PM2.5 in the 

built-up areas of key cities from 2010 to 2018 according to 
the population weight. Calculations were obtained using the 
following equation:

Cagg=SUM(Cnat×Pnat)/SUM(Pnat)

where Cagg is the estimation at the global scale, Cnat is the 
estimation at the country scale, and Pnat is the national 
population.

Data used in this case

Remote sensing data and related products included MODIS AOD 
and MODIS NDVI in the time series. Monitoring data included 

atmospheric composition of China’s environmental monitoring 
stations, meteorological data, and reanalysis by ECMWF.

Results and analysis

The MODIS AOD products from the National Aeronautics and 
Space Administration (NASA) Terra and Aqua satellites were 
used to estimate the PM2.5 concentration from 2010 to 2018 in 
China (Figure 4-9). In general, the spatial pattern of the annual 
PM2.5 over China showed high correlation with the accumulation 
of both population and industries. Elevated PM2.5 levels were 
mostly concentrated on those cities or city-clusters with higher 

urbanization or industrialization in central and eastern China. 
Temporally, the annual nationally averaged PM2.5 presented 
an overall decreasing trend from 2013 to 2018. This clearly 
demonstrates the effectiveness of comprehensive pollution 
control measures conducted by the Chinese government in recent 
years.
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Figure 4-9. Annual average distribution of PM2.5 in China from 2010 to 2018.

Average annual PM2.5 data products have been developed for the period from 2010 to 2018.

The Beijing-Tianjin-Hebei, Yangtze River Delta, Pearl River Delta, and Chengdu-Chongqing regions 
showed an overall decreasing trend from 2010 to 2018.

Outlook

Deep learning methods will continue to be explored in the future. 
More relevant indicators and parameters will be introduced 
to improve estimation accuracy. The mechanism and source 
distribution of pollutants in the atmosphere will also be explored 
to promote atmospheric research.

In terms of application and promotion, the atmospheric 

environment affects human health, which is the primary concern 
of the public. We will improve and promote the progress and 
application of PM2.5, Ozone and other products closely related 
to public health through the construction of high spatial and 
temporal resolution data. Meanwhile, it also needs the guidance 
and support from the government, society and other users.

Highlights

2010                                                                                   2011                                                                                  2012

2013                                                                                   2014                                                                                  2015

2016                                                                                   2017                                                                                  2018
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Proportion of urban open public space in China

Open public spaces provide valuable services such as 
entertainment opportunities, aesthetic enjoyment, and 
environmental and agricultural functions for urban residents. 
These spaces serve as a prerequisite for improving city 
functions, promoting health, and developing efficient urban 
ecosystems with better quality of life for residents. Public 
space is also linked to benefits such as increased social security 

and cohesion, greater equality, and improved health and well-
being. Open public spaces are the key to realizing SDG 3 (Good 
Health and Well-being), SDG 5 (Gender Equality), SDG 8 
(Decent Work and Economic Growth), and SDG 13 (Climate 
Action). Urban public space planning and management provides 
a feasible path for urban space transformation and quality 
improvement. 

Scale: National
Study area: China

◎ The case data includes navigation data for China acquired in 
2015, which includes public green spaces, public squares, and 
roads at all levels (e.g., highway, national highway, provincial 
highway, county road, township road, and urban streets). The 
data was stored in a PostgreSQL database.

◎ The case data also includes land use data for China in 2015 
with a 100-meter resolution. Data was obtained from China’s 
Land use Status Remote Sensing Monitoring Database, CAS. It 
is generated by visual interpretation based on Landsat 8 images.

The “urban land” sub-category is extracted from land use data 
to establish the national built-up area spatial database. Open 
public spaces (including public green spaces and squares) 
are extracted from within defined urban boundaries based on 
built-up areas from national navigation vector data, and road 
data at all levels (e.g., highway, national highway, provincial 
highway, county road, township road, and urban streets). Road 
data is converted from line to polygon structures according 
to Chinese road width specifications. The specific calculation 
process is described as the following. (1) A national kilometer 
grid is generated and a Fishnet function is defined. The grid 
transformation method is then used to generate the national 

kilometer grid. (2) The national grid is overlapped with public 
green space spatial data to generate kilometer grid public green 
space spatial data. (3) High-speed, provincial, county, and 
other urban roads are converted into polygon data according 
to national road construction width specifications. This data is 
then overlapped with a national grid to generate kilometer grid 
road spatial data. (4) Road data and public green space data are 
integrated at the grid scale and divided by the total urban built-
up area to determine the urban open public space area. (5) The 
results are converted from the kilometer grid scale to county, 
city, provincial, and national scales based on spatial statistical 
analysis.

Target 11.7: By 2030, provide comprehensive, convenient, green public space for all, especially for women, children, 
the elderly, and those with disabilities.

Indicator 11.7.1: Average proportion of open public space provided for all people in urban built-up areas.

Method

Data used in this case

This case study evaluated the open public spaces for all 
prefecture-level cities in China. The preliminary conclusion 
from the analysis was that at the provincial level, the average 
proportion of open public space in the built-up areas of Chinese 

cities was 17.98% (excluding Hong Kong, Macao, and Taiwan 
Province). Beijing featured the highest proportion of open public 
spaces (29.18%), while Guangxi had the lowest percentage 
(10.82%). A total of 18 provinces, including Qinghai, Shaanxi, 

Results and analysis
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Guizhou, Shanxi, Jiangxi, Jilin, Hubei, Hunan, 
and Shandong, had a lower amount of open 
public space areas compared to the national 
average. At the city level, the proportion of 
open public spaces in the eastern cities was 
higher than in the central and western cities. 
Moreover, provincial capitals had higher 
proportions of open spaces compared to 
other cities in the province. The proportion 
of open public spaces in the Beijing-Tianjin-
Hebei agglomeration, Yangtze River Delta 
urban agglomeration, the Pearl River Delta 
urban agglomeration, Sichuan Basin urban 
agglomeration, and the Yunnan-Guizhou 
urban agglomeration were higher than in the 
surrounding cities. Urban open public spaces 
were mainly composed of parks, squares, 
green spaces, and other public spaces and 
roads. The largest urban open spaces based 
on the density of urban roads were found in 
the Jing-Jin-Ji urban agglomeration, Yangtze 

Figure 4-10. Proportion of open public space in major prefecture-level cities in 
China.

Figure 4-11. Proportion of urban open public spaces for different provinces.

At the provincial level, the average proportion of open public spaces in the built-up areas of Chinese 
cities was 17.98% (excluding Hong Kong, Macao, and Taiwan Province). Beijing had the highest 
proportion of open public space (29.18%), while Guangxi had the lowest proportion (10.82%).

At the city level, the proportion of open public space in eastern cities was higher than in the central 
and western cities. Moreover, the provincial capitals had a higher proportion of open space than other 
cities in the province.

Highlights

River Delta urban agglomeration, and the Pearl River Delta 
urban agglomeration. Green public spaces were mostly found in 

the Sichuan Basin urban agglomeration and the Yunnan-Guizhou 
urban agglomeration.
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Outlook

The navigation data for China can be updated in real time, and 
land use products are updated every 3-5 years. This is enough 
to meet the requirements for future high temporal resolution 
evaluation.

The method adopted in this case is simple, and navigation and 
land use data are relatively easy to obtain. This enables the 
methodology to be easily reproducible in other countries and 
allows for international comparison.

The open space described in this study does not consider diverse 
categories of open space, and this needs to be addressed in the 
future.

It is still challenging to classify information based on gender, 
age, disability, and other demographic characteristics. The next 
step is to develop spatial data products for population based 
on different groups utilizing big data such as mobile phone 
platforms and Internet sources.

These case studies propose methods for rapid extraction of 
global impervious surface using multi-source Big Earth Data. A 
new method was proposed to estimate near-surface PM2.5 (SDG 
11.6.2, Tier I) using aerosol optical thickness retrieved from 
satellites. This method was observed to improve the accuracy 
and spatiotemporal resolution of PM2.5 remote sensing estimation 
and provides a new data product for the evaluation of urban air 
quality.

High-resolution remote sensing and navigation vector data was 
examined in terms of urban public transport (SDG 11.2.1, Tier 
II), urban land use efficiency (SDG 11.3.1, Tier II), and urban 
public space (SDG 11.7.1, Tier II) indicators. These datasets 
were used to develop a high spatiotemporal resolution method 
for extracting information related to urban public transport, open 
public spaces (e.g., green space, squares, roads), urban built-up 
areas, and population distributions. This allowed for the creation 
of high-resolution regional data products for China.

In this chapter, a new indicator was proposed for preserving and 
protecting world cultural and natural heritage sites (SDG 11.4.1, 
Tier III). This indicator is defined as the “increase in capital 
investment per unit area to preserve and protect world cultural 
and natural heritage”. A corresponding evaluation model was 

developed and a case study was conducted in China.

Sustainable development in urban areas is crucial for resource 
and environmental disaster management challenges and for 
the future development in cities. The following studies are 
being planned to develop methodologies for comprehensively 
evaluating indicators.

(1) There are plans to further tap into the potential of Big Earth 
Data by developing new evaluation models and producing high-
quality evaluation datasets.

(2) Multi-indicator coordinated trade-off research will be carried 
out around city-related indicators with SDGs as the framework. 
Active cooperation with government departments will be carried 
out to comprehensively evaluate the sustainability of major 
Chinese cities and serve government decision-making.

(3) SDG 11 indicator evaluation models and methods supported 
by Big Earth Data will be standardized, and new data and 
methods will be promoted to the international community. 
Data and technical support will be provided for developing 
countries to help monitor and comprehensively evaluate SDG 11 
indicators.

Conclusions
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Oceans are an important part of the global ecosystem. They 
provide food and livelihoods for billions of people, absorb 
atmospheric heat and more than a quarter of carbon dioxide, 
and produce about half of the oxygen in the atmosphere. In 
recent decades, human activities and global climate change 
have adversely affected the stability of marine ecosystems, 
especially the coastal-ocean ecosystem. Environmental problems 
like acidification, hypoxia, and eutrophication have increased 
considerably, while ecological disasters such as harmful algal 
blooms (HABs) and jellyfish blooms occur more frequently. 
Coastal fishery resources are being exhausted extensively, and 
marine biodiversity is also under stress from ocean acidification 
and terrigenous pollutants. Therefore, marine ecosystems 
and environments are under major threats and the sustainable 
development of coastal areas and their economic outcomes 

face serious challenges. Policies and treaties that encourage 
the responsible exploitation of marine resources are critical to 
address these threats.

Several large marine studies have been initiated in China and 
helped gather data and improve theoretical understanding of 
marine ecosystems. However, there are still shortages in the 
comprehensive assessment of marine pollution, acidification, 
coastal ecosystem health management, and sustainable utilization 
of marine resources. It is hard to meet SDG 14, “conserve 
and sustainably use the oceans, seas and marine resources for 
sustainable development”, at the present stage. This research is 
targeting development of basic data products and data platforms 
to facilitate access to information for sustainable development in 
marine environments.

Table 5-1. Focused SDG 14 indicators

Target Indicator Tier

14.1 By 2025, prevent and significantly reduce marine pollution of 
all kinds, in particular from land-based activities, including marine 
debris and nutrient pollution.

14.1.1 Eutrophication index and 
concentration of floating plastic 
pollutants.

Tier III

14.2 By 2020, sustainably manage and protect marine and coastal 
ecosystems to avoid significant adverse impacts, including by 
strengthening their resilience, and take action for their restoration in 
order to achieve healthy and productive oceans.

14.2.1 Proportion of national special 
economic zones implementing 
ecosystem-based management 
measures.

Tier III

Background
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The research on Big Earth Data for SDGs is committed to 
realizing SDG 14 through studies focused on four key priority 
areas, namely: assessment of marine pollution, detection of 
ocean acidification, marine ecosystem health management 

and sustainable exploitation of marine resources. The research 
developed new datasets, models, and methods to calculate 
specific indicators for these four key areas (Table 5-2).

Table 5-2. Cases and their contributions to SDG 14

Indicator Case Contributions

14.1.1 Eutrophication index and 
concentration of floating plastic 
pollutants.

Construction and 
application of an integrated 
eutrophication assessment 
model for typical coastal 
waters of China.

Method and model: Construct the latest comprehensive assessment 
system suitable for evaluating coastal eutrophication in China. 
Decision support: Participate in the establishment of marine 
industry standards for the assessment of coastal eutrophication in 
China; Issue international reports on eutrophication assessment in 
the Northwest Pacific Action Plan (NOWPAP) region together and 
propose it to UNEP.

14.2.1 Proportion of national 
special economic zones 
implementing ecosystem-based 
management measures.

Ecosystem health 
assessment in Jiaozhou 
Bay, China.

Method and model: Build the evaluation index system for typical 
waters in China

Contributions

Yellow River Estuary
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Construction and application of an integrated eutrophication assessment 
model for typical coastal waters of China

Land-based human activities are increasing and producing a 
large amount of pollutants, which have led to rapid deterioration 
of the eutrophication status in coastal areas via river discharges, 
underground waste input, or atmospheric deposition. Confronted 
with nutrient pressure, coastal ecosystems have responded 
through ecological signals, such as hypoxia and HABs. Based 
on the framework of “Pressure-State-Response”, an integrated 
eutrophication assessment model was developed, which reflects 

both water quality (the pressure part) and ecological effect 
(the response part). By using this model, estuaries and bays 
along China’s coast were assessed at multiple scales, not only 
to understand the human pressure and ecological symptoms, 
but also to define a comprehensive eutrophication status. Such 
a model and evaluated results provide scientific and technical 
support for decision making processes in eutrophication 
management.

Scale: Local
Study area: Coastal Waters, China

Target 14.1: By 2025, prevent and significantly reduce marine pollution of all kinds, particularly from land-based 
activities, including marine debris and nutrient pollution. 

Indicator 14.1.1: Eutrophication index and concentration of floating plastic pollutants.  

Method

The model considers different sensitivities and hydrologic 
conditions in different areas to reflect the characteristics of 
different anthropogenic pressures. The study considered 
primary and secondary ecological responses to detect the 
degree and estimate the stage of coastal eutrophication. The 

human management response part was added in the model by 
combining data on human pressures with ecological responses 
to comprehensively evaluate the trophic status in varied coastal 
areas. The framework of the model ensured the comprehensive 
and objective assessment of coastal areas.

Data used in this case

Indicators of nutrients in typical coastal areas of China—Chl-a, 
biomass, and dissolved oxygen—were obtained from the CAS 
Big Earth Data Program database, and some other data were 

collected from published literature, as well as related bulletins 
of China.

Results and analysis

In each case, the anthropogenic pressures and the ecological 
responses were individually evaluated initially. For example, in 
Jiaozhou Bay and adjacent areas, the results (human pressure, 
Figure 5-1 left, and ecosystem symptom HABs, Figure 5-1 right) 
indicate that there were spatial shifts in ecosystem symptoms, 

as the area experiences frequent HAB starting within the bay 
moving outwards in response to human activities that were 
also observed to have rapidly increased within the same period 
outside the bay. These results provide valuable information on 
HAB timings and patterns to devise a management plan. 

Case Study
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Figure 5-1. Assessment of human pressure and typical eutrophication symptoms (HABs) in Jiaozhou Bay, China (JB: Jiaozhou 
Bay; OJB: Waters outside Jiaozhou Bay).

Figure 5-2. Evaluation of the trophic status in typical coastal waters of China.

Furthermore, as shown in the Figure 5-2, the eutrophication 
status of each case was evaluated comprehensively, considering 
both human pressures and ecological responses. The results also 
indicate that the eutrophication problems in the inner bays and 
big estuaries were very serious where anthropogenic activities 

are concentrated in China (Figure 5-2). These areas include 
Bohai Bay, Jiaozhou Bay, Laizhou Bay, and Changjiang River 
Estuary, and more. In these areas, response strategies should 
be developed to reduce terrigenous nutrients and facilitate 
ecological restoration. 
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Develop an integrated eutrophication assessment model reflecting both water quality (the pressure 
part) and ecological effect (the response part). 

Scientifically evaluate the eutrophication status of typical coastal waters. The indicators of both 
human activity-derived pressures and ecological responses are relatively important and should all be 
taken into consideration.

In typical waters along China’s coast, the eutrophication problem in the inner bays and big estuaries 
were very serious where anthropogenic activities were dense, and the ecological responses were also 
serious.

Outlook

This method has been listed as a marine standard for the 
assessment of coastal eutrophication in China, and it will 
ultimately be published in the near future. 

Representing China in the framework of NOWPAP, six 
international reports were proposed to UNEP, and such 

eutrophication detection methods will be continuously involved 
in the future plans issued by NOWPAP.

The relevant data will be updated continuously, to further 
contribute to the realization of SDGs through evaluation results 
and decision support.

Highlights

Large scale HAB occurrences in a typical eutrophicated coastal area of China
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Ecosystem health assessment in Jiaozhou Bay, China

One of the most important approaches to ensuring the protection 
and sustainable development of marine environments and 
resources is to establish ecosystem-based management 
practices that maintain a healthy ocean ecosystem. Marine 
ecosystem health assessments can be used as important decision 
support tools to provide direct, high-quality information 
and to guide sustainable coastal use and development. It can 
also help to improve an ecologically sound management 
strategy for sustainable use and development of coastal areas. 
Industrialization, urbanization, aquaculture, agriculture, tourism, 

and other human activities, combined with global changes, 
are compounding pressures on coastal ecosystems. Ecosystem 
health assessment needs to integrate relevant data sources from 
different aspects describing ecosystem conditions and impacts 
of existing pressures. A coordinated way of integrating land and 
marine data/information is hence necessary to assess current 
cumulative pressures and impacts. The research is working to 
develop new approaches based on multi-source data, big data 
analysis, and machine learning technologies.

Scale: Local
Study area: Jiaozhou Bay, China

Target 14.2: By 2020, sustainably manage and protect marine and coastal ecosystems to avoid significant adverse 
impacts, including by strengthening their resilience and take action for their restoration, to achieve healthy and 
productive oceans.

Indicator 14.2.1: Proportion of national exclusive economic zones managed using ecosystem-based approaches.

Method

Taking Jiaozhou Bay as a case study, a primary assessment 
framework was established based on long-term studies that 
focused on variations in meteorological, hydrological, chemical, 
and biological elements and key processes, as well as their 
impacts on marine ecosystem evolution. With a focus on SDG 
14.2, a selection of indicators and guideline settings were 
reviewed to gain a better understanding of ecosystem structure, 

services, functions, and ecological disasters and diseases. The 
present case study uses data mining to improve guidelines, 
thresholds, and reference settings in existing health assessments 
using machine learning techniques. The goal is to translate 
monitoring, observation, and research results into information 
that can be understood easily by the public and policy makers.

Data used in this case

◎ 2006.01-2015.12, observation data in Jiaozhou Bay, 
including: phytoplankton, zooplankton, benthos, bacteria, 
hydrological, physical, and chemical factors. 

◎ Aquaculture production, area, and other environmental data 
from 2006-2015 environmental situation bulletins.

Results and analysis

The 2006-2015 long-term variations in the meteorological, 
hydrological, chemical, and biological elements at Jiaozhou Bay 
showed that the marine ecosystem in the bay was experiencing 
a change. Nutrient concentrations in the bay exhibited a 
decreasing trend, suggesting that the water quality in the bay 
has been improving; while the health conditions of the plankton 

community, as represented by the phytoplankton/zooplankton 
community compositions and size distributions, exhibited an 
ascending trend (Figure 5-3). The long-term changes in nutrient 
concentration and structure led to an increasing number of 
nutrient limitations in the bay (Figure 5-4), which has potential 
impacts on phytoplankton communities and water quality.
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The results of the pilot health assessment in Jiaozhou Bay 
show that the health condition of the Jiaozhou Bay ecosystem 
is classified as grade “B”, which means that the ecosystem is 
in relatively good condition. Environmental conditions during 
the study duration show an improving trend, consistent with 
the varying trend in nutrients. The biota condition in the bay 

had a slight declining trend, similar to the plankton community 
condition indicators. The assessment results show nonlinear 
characteristics in the long-term variations of indicators at 
different levels, partly consistent with historical trends, with 
only a few indicators showing a different trend over the past 
decade.

Figure 5-3. Variations in plankton abundance and nutrient concentration in Jiaozhou Bay from 2006 to 2015.

Figure 5-4. Frequencies of nutrient limitations and ecological disasters in Jiaozhou Bay for 2006, 2008, 2012, and 2015.
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Figure 5-5. Evolution of marine ecosystem conditions from 2007 to 2015, and result of pilot health assessment in Jiaozhou Bay.

The case study improved ecosystem health assessment research by reviewing a selection of indicators 
and guideline settings to gain a better understanding of ecosystem structure, services, functions, 
and ecological disasters and diseases. By applying machine learning-based data mining technology, 
the guideline, threshold, and reference settings in existing health assessments can be improved. The 
improved framework was used to conduct a pilot marine ecosystem health assessment in Jiaozhou Bay.

The overall health condition of Jiaozhou Bay is relatively good: environmental conditions during the 
study duration show an improving trend, and biota conditions in the bay had a slight declining trend.

The assessment results show nonlinear characteristics in the long-term variations of indicators at 
different levels, partly consistent with historical trends, with only a few indicators showing a different 
trend over the past decade.

Highlights
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Focusing on marine pollution and marine ecosystem health 
management, an integrated eutrophication assessment model 
and an experimental evaluation model for marine ecosystems 
were developed based on data provided through the CAS 
Big Earth Data Program. Reflecting both water quality and 
ecological effects, the eutrophication assessment model was 
applied to evaluate the estuaries and bays along China’s coast 
at multiple scales, and the research reports on eutrophication 
assessment in China were proposed to UNEP. By participating 
in the establishment of marine industry standards for coastal 
eutrophication assessment in China, such models and 

evaluated results provide scientific and technical support for 
the management of discharged offshore nutrient pollutants 
and coastal eutrophication. Experimental evaluation of the 
ecosystem health of Jiaozhou Bay was also carried out, and a 
scenario simulation system will be developed to predict possible 
responses of coastal ecosystems to changes in marine pollution. 
The operational application of related technologies will be 
further promoted to provide decision-making support for coastal 
environmental protection and management, and effectively 
evaluate the SDG 14.2.1 indicator and realize the SDG 14 target.

Conclusions

Outlook

The current case study improves existing coastal ecosystem 
health assessment research in the following aspects: selecting 
indicators from ecosystem structure and changes; establishing 
reference and guideline values for indicators using machine 
learning technology; and improving assessment methods 
according to data types and characteristics.

The marine ecosystem health assessment will be further 
developed, including diagnostic models and scenario simulation 
models to analyze stress factors on marine health and to 
diagnose marine ecosystem health. By integrating diagnostic, 
water quality, ecological, and hydrodynamic modules into a 
model platform, it will be able to simulate different scenarios 

and predict possible responses of the marine ecosystem.

This structured research methodology will be repeated to 
study other coastal regions and improve our model for a wide 
variety of environments. With collaborating partners such as 
the Australian Institute of Marine Science and the Indonesian 
Institute of Sciences, the current research is being considered for 
application to other areas.

Advisory reports as decision support tools will be developed 
with the aim to support national strategic objectives and to 
facilitate targeted end-users towards restoration and protection 
of coastal and marine environments.
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Terrestrial ecosystems are important components of the 
Earth system and provide diverse habitats for humans. The 
resources and services provided by terrestrial ecosystems have 
enabled humans to thrive and develop over thousands of years. 
Unfortunately, excessive exploitation of resources, pollution, 
and unplanned development have led to land degradation and 
threatened the sustainability of terrestrial ecosystems. Cropland 
is currently being lost at rates 30 to 35 times higher compared 
to the historical record. Drought frequency and desertification 
extent are also rapidly increasing, resulting in the loss of 

12 million hectares of cropland. This development mostly 
affects poor and vulnerable communities around the world. 
Additionally, among the 8,300 animal breeds known, 8% are 
extinct and 22% are at risk of extinction. The impacts of humans 
on ecosystems over the past 50 years have been more rapid and 
widespread than at any other time in history, which has led to 
huge irreversible losses of biodiversity on Earth. Sustainable 
management of terrestrial ecosystems is now more critical due 
to the effects of climate change and urgent action is required to 
mitigate its impact. 

Table 6-1. Focused SDG 15 indicators

Target Indicator Tier

15.1 By 2020, ensure the conservation, restoration, and 
sustainable use of terrestrial and inland freshwater ecosystems 
and their services. This refers to forests, wetlands, mountains, 
and drylands, and is in line with international agreements.

15.1.2 Proportion of sites for terrestrial and 
freshwater biodiversity that are covered by 
protected areas.

Tier I

15.5 By 2020, take urgent action to reduce the degradation of 
natural habitats, halt the loss of biodiversity, and protect and 
prevent the extinction of threatened species.

15.5.1 Red List Index. Tier I

Background
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The research aims to use Big Earth Data approaches to support 
monitoring and evaluating SDG 15 indicators in China and 
specific areas. It will provide a platform for linking Chinese 
expertise and experience in key fields related to SDG 15 with the 
international community (Table 6-2). The research on Big Earth 

Data for SDGs has multiple objectives, including developing and 
improving other related data products, such as the biodiversity 
dataset, and the species Red List Index in China. In addition, the 
research results will provide decision support through published 
reports and assessments, and access to data and information.

Table 6-2. Cases and their contributions to SDG 15

Indicator Case Contributions

15.1.2 Proportion of important 
sites and ecosystems for 
terrestrial and freshwater 
biodiversity that are covered by 
protected areas.

Evaluating the effectiveness of 
the management of protected 
areas: An example from 
Qianjiangyuan National Park 
in China.

Data product: Qianjiangyuan National Park ecosystem and 
biodiversity datasets.
Decision support: Countermeasures for biodiversity 
conservation and management in Qianjiangyuan National 
Park.

15.5.1 Red List Index.

Evaluation of the Red List 
Index of threatened species in 
China.

Data product: Chinese species Red List Index data.

Assessment of giant panda 
habitat fragmentation.

Data product: The data describes the current distribution and 
past changes in the giant panda habitat in China over the past 
40 years.
Decision support: Support is provided to assess evolutionary 
characteristics and suggestions are offered for protecting giant 
panda habitats.

Contributions
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Evaluating the effectiveness of the management of protected areas: 
An example from Qianjiangyuan National Park in China

Protected areas, including national parks, nature reserves, and 
other nature parks, represent a primary means for preventing 
global biodiversity loss. Assessing the effectiveness of 
protected areas on biodiversity conservation usually involves 
two dimensions. First, the coverage of Key Biodiversity Areas 
(KBAs) by protected areas is assessed at global, regional, or 
national scales to ensure that important biodiversity areas are 
included in the protected area system. Secondly, the rationality 
of the spatial planning and management effectiveness are 
evaluated at the scale of a single protected area. This is 
required to ensure that the protected area can effectively protect 
biodiversity after it is established. Significant progress has been 
made towards expanding the spatial extent of protected areas. 
For example, 15% of terrestrial and freshwater environments 
are now covered by protected areas. However, the effectiveness 
of existing protected areas is constrained by extensive human 
activities within their boundaries as well as protected area 
downgrading, downsizing and degazettement (PADDD). 
Numerous studies have examined the effectiveness of protected 
areas using different indicators, yet there is a lack of systematic 

monitoring data and indicators for assessing the effectiveness of 
management practices.

Qianjiangyuan National Park was one of the first ten pilot 
national parks in China. The park was established to protect 
a large area of low lying zonal evergreen broadleaved forests 
in Eastern China (Figure 6-1). It is home to two China’s 
endemic species, the first-class protected species, black muntjac 
(Muntiacus crinifrons) and Elliot’s pheasant (Syrmaticus ellioti). 
The park also provides important ecosystem services relating 
to water provisions for the developed region in the Yangtze 
River Delta, Eastern China. Qianjiangyuan National Park was 
used as an example in this case study, and an indicator system 
was developed to evaluate the effectiveness of protected area 
management. A corresponding biodiversity monitoring platform 
was also established to provide data support for the calculation 
of indicators. This enables a comparison of management 
effectiveness between protected areas, and the integration of 
data from different areas for evaluation at regional and global 
scales.

Scale: Local
Study area: Qianjiangyuan National Park, China

Target 15.1: By 2020, ensure the conservation, restoration, and sustainable use of terrestrial and inland 
freshwater ecosystems and their services. This includes forests, wetlands, mountains, and drylands, and is in 
line with obligations under international agreements.

Indicator 15.1.2: Proportion of important sites and ecosystems for terrestrial and freshwater biodiversity that are covered 
by protected areas.

Case Study
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Figure 6-1. A lowland evergreen broadleaved forest in Qianjiangyuan National Park (left). A first-class protected animal known as 
the black muntjac (above right). Elliot’s pheasant (bottom right).

Method

Figure 6-2. (a) National park plant and animal diversity monitoring platforms. Each infrared trigger camera was set up in a forest 
dynamics plot. (b) Digital surface model (DSM) of the national park remote sensing platform.

The management effectiveness of protected areas was assessed 
using the following three indicators: (1) the area and degree 
of fragmentation of key target ecosystems, (2) the change in 
population size for key protected plants and animals, and (3) 
ecosystem functions as indicated by above-ground biomass and 
carbon stock.

Three biodiversity monitoring platforms were established 

based on the above indicators to obtain data for Qianjiangyuan 
National Park (Figure 6-2).

(1) The national park plant diversity monitoring platform 
involved dividing the entire park into a 1×1 km grid and the 
construction of 641 plots with an area ≥0.04 ha (Figure 6-2a). 
All freestanding stems that were ≥1 cm in diameter at breast 
height were censused in each plot. Eight 2×2 m subplots and 1×1 

(a) (b) 
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Results and analysis

Data used in this case

The field survey data included 641 forest dynamics plots with 
an area of ≥0.04 ha and an infrared trigger camera monitoring 
network constructed on a 1×1 km grid. The remote sensing 

datasets included LiDAR and hyperspectral data, and a digital 
orthophoto map.

(1) Results revealed that evergreen broadleaved forests covered 
5,827.1 ha, or 23.1% of the total area in Qianjiangyuan National 
Park. The largest patch of evergreen broadleaved forest was 1,178 
ha in area. Plantation forests accounted for 26% of the total 
area in the park. There are still large areas covering old-growth 

evergreen broadleaved forests in the neighboring areas.

(2) The mean amount of above-ground carbon stock was 
estimated to be 86.2 mg/ha, and ranged between 75 and 100 mg/
ha. The largest carbon stock (228.5 mg/ha) was found in old-
growth evergreen broadleaved forests. Conversely, the lowest 

Figure 6-3. Distribution of suitable habitat patches for black muntjac in Qianjiangyuan National Park (a). The variation in relative 
abundance for black muntjac (b) and Elliot’s pheasant (c) during 2014-2017.

(a) (b) 

(c) 

m subplots were established for monitoring shrubs and herbs, 
respectively.

(2) In the national park animal diversity monitoring platform, 
an infrared trigger camera was installed in 1×1 km grid cells to 
monitor animal diversity and population dynamics (Figure 6-2a).

(3) In the national park remote sensing platform, forest canopy 
structures were obtained for the entire park using light detection 
and ranging (LiDAR). Moreover, the functional traits of plant 
leaves were retrieved using hyperspectral remote sensing data 
(Figure 6-2b).

The data from the three biodiversity monitoring platforms 
was integrated to evaluate the management effectiveness 

of Qianjiangyuan National Park. Forest communities were 
classified using the data from the forest dynamics plots and 
remote sensing imagery. The area and fragmentation indices for 
subtropical evergreen broadleaved forests were calculated for the 
entire national park. The abundance and inter-annual change in 
population size of the black muntjac and Elliot’s pheasant were 
estimated in the national park using the N-mixture model based 
on the data from infrared trigger cameras. The above-ground 
biomass and carbon stock of the forest ecosystem was estimated 
at the forest plot level using data from forest dynamics plots. 
These results were scaled up to the level of the entire national 
park and combined with remote sensing imagery.
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Three biodiversity monitoring platforms were developed to collect data to assess the effectiveness 
of management in Qianjiangyuan National Park. The park conserves a large area of low-lying zonal 
evergreen broadleaved forest as well as a large area of suitable habitats for the black muntjac, an 
endangered species. These indicators assess ecosystem integrity in Qianjiangyuan National Park.

In 2014-2017, the population size of Elliot’s pheasant was observed to increase, but the population 
of the black muntjac had significantly declined. Additional monitoring and conservation efforts are 
necessary to understand the cause of this phenomenon. Furthermore, cross-border cooperation is 
required to protect evergreen broadleaved forests and endangered animal habitats. Such efforts are 
also necessary for restoring plantation forests in the park and to improve the effectiveness of park 
management.

Outlook

Highlights

The biodiversity monitoring indicator system established in this 
study promotes the assessment of management effectiveness 
in protected areas. Currently, the specific indicator system 
has only been applied to Qianjiangyuan National Park. 
Appropriate indicators should be selected based on the type and 
characteristics of ecosystems. The characteristics of the protected 
area should be considered when applying the monitoring scheme 
to other protected areas.

The accuracy and timeliness of the management assessment of 
protected areas can be improved using various methods. For 
instance, it is recommended to perform in-depth research on the 
correlation between ground observation data (e.g., vegetation 
dynamics plots and infrared camera datasets) and near-surface 
remote sensing. There is also a need to develop new indices for 
retrieving biodiversity patterns based on near-surface remote 
sensing, and to enhance the application of “Space-Air-Ground” 
integrated biodiversity monitoring platforms.

carbon stock (18.1 mg/ha) was found in secondary forests 30 
years after clear-cut tree harvesting, which accounted for one-
twelfth of the carbon stock of old-growth forests. 

(3) The total area of suitable habitats for the black muntjac was 
4,250 ha and accounted for 16.9% of the park (Figure 6-3a).

(4) The population of black muntjac significantly declined during 
2014-2017, and the population of Elliot’s pheasant increased 

during this period (Figure 6-3b, c). 

(5) Results demonstrate that the population size of the black 
muntjac in Qianjiangyuan National Park significantly decreased,  
requiring further monitoring and conservation. Cross-border 
cooperation is necessary to protect evergreen broadleaved forests 
and endangered animal habitats, and to restore plantation forests 
to improve the effectiveness of national park management.
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Evaluation of the Red List Index of threatened species in China

Climate change and human activities are currently threatening 
global biodiversity. Researchers have proposed a Red List Index 
based on the red list of species of the International Union for 
Conservation of Nature (IUCN) to assess changes in biodiversity 
and the effectiveness of conservation measures. This indicator 
is one of the most effective means for assessing endangered 
species and has been listed as one of the evaluation indicators in 
the UN MDGs. Moreover, the indicator has been widely used in 
the assessment of conservation progress at global scales. Many 
countries have conducted a national-scale assessment using the 
Red List of Species due to availability of detailed and accurate 

species information. The Red List of Chinese Species was first 
released by China in 2004 and was updated in 2016-2017. The 
Red List Index is calculated based on the National Red List of 
Species and accurately reflects the changing biodiversity trends 
in the country and guides conservation work at the national 
level. In this study, the Red List Index in the National Red List 
of Species was used to assess the threat levels to higher plants, 
terrestrial mammals, and birds in China from 2004 to 2017. The 
goal was to provide a basis for the study of biodiversity and the 
formulation of conservation strategies in China.

Scale: National
Study area: China

Target 15.5: By 2020, take urgent and significant action to reduce the degradation of natural habitats, halt the 
loss of biodiversity, and protect and prevent the extinction of threatened species.

Indicator 15.5.1: Red List Index.

Method

The first assessment of the red lists for higher plants was 
gathered from China Species Red List, Vol. 1: Red List. The 
second assessment was obtained from the China Biodiversity 
Red List—Higher Plants with some minor revisions from the 
special issue of Higher Plants of China published in Biodiversity 
Science. The two assessments of terrestrial mammals and birds 
were obtained from China Species Red List, Vol. 2: Vertebrates 

and the Chinese Red List of Vertebrates.

Species that have been evaluated at least twice can participate 
in Red List Index calculation. Moreover, species that were first 
assessed as extinct (EX/EW/RE), and any species that were once 
assessed as data deficient DD were not used in the calculations. 
A total of 3,948 higher plants, 568 terrestrial mammals, and 
1,213 birds were used in the calculation of the Red List Index.

Data used in this case

The data were derived according to the IUCN classification 
criteria for threatened factors. These factors referred to the 
spatial data of human activities, including the population 

density, the number of highways and waterway entrances, power 
infrastructure, urban areas, and farmland.

Results and analysis

(1) Changes in the threatened status for species.

From 2004 to 2017, the proportions of higher plants that have 
declined, remained stable, and improved in status were 7.9%, 
37.4%, and 47.8%, respectively, with a few species going 

extinct. The number of mammal species that are critically 
endangered (CR) has increased, while the number of species 
that are endangered (EN) and vulnerable (VU) has declined. The 
number of threatened bird species (including CR, EN, VU) has 
also increased.
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(2) Red List Index

The results of the Red List Index evaluation show that (Figure 
6-5), Red List Index of birds declined slightly, while mammal 
index was on the rise. For higher plants, the Red List Index was 
0.51 in 2004 and increased to 0.69 in 2017. This suggested that 
their overall endangered status of higher plants and terrestrial 
mammals in China has been improved. After the first assessment 
of threatened species in 2004, many conservation measures 
have been taken by national and local biodiversity conservation 
organizations and units, and even many protected areas have 
been established and conserved for some species. Therefore, 
many endangered species have been effectively protected since 
2004, alleviating their endangered status to a certain extent, and 
making their Red List Index show an upward trend.

(3) Threats to biodiversity loss

Among the 12 categories of threats leading to biodiversity loss, 
the use of biological resources and agriculture/aquaculture 
development are the main threats to China’s terrestrial mammals 
and birds. Higher plants are mostly threatened by natural system 
modifications and the use of biological resources. Controlling 
these threats is an effective means for stopping the decline of 
threatened species and curbing biodiversity loss.

These findings reveal that several changes in the threatened 
status of higher plants, terrestrial mammals, and birds have 
occurred in China over the past decade. Results suggest that 
conservation actions have mostly improved the threatened status 
of higher plants and terrestrial mammals. However, some groups 
such as bird species have been declining in threatened status, 
suggesting that urgent action is needed to reverse their decline. 
This study provides scientific information to guide species 
conservation in China and demonstrates the potential of using a 
national species red list for biodiversity conservation.

Figure 6-4. Changes in the threatened levels of higher plants, 
terrestrial mammals, and birds in China.

Figure 6-5. Red List Index for higher plants, 
terrestrial mammals, and birds in China.

Figure 6-6. Composition and proportion of threatening factors 
faced by higher plants, terrestrial mammals, and birds in 
China.

Results reveal that the Red List Index for higher plants and land mammals in China was on the rise 
from 2004 to 2017, and their endangered status has been improved. 

Bioresource use and agriculture/fishery development are the main threats faced by terrestrial 
mammals and birds in China. Higher plants are more exposed to direct threats from ecosystem 
changes and over-exploitation. These threats can be controlled to reverse population decline and curb 
biodiversity loss.

Highlights

Higher plants Birds Terrestrial
mammals
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Outlook

Establishing dynamic monitoring of threatened species or 
species of conservation concern in China, so as to find and 
eliminate species threat factors and promote species conservation 
will be an effective way and an important work for biodiversity 
conservation in the future. 

The overall situation of conservation of terrestrial mammal and 
bird diversity in China is still very serious, and some species 

groups need to be paid more attention because of differences in 
anthropogenic threats. 

The next step is to strengthen the analysis of threats to species 
and their spatial patterns to provide targeted support for 
protection and management. This will assist in slowing the rate 
of biodiversity decline and reversing biodiversity loss.
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Assessment of giant panda habitat fragmentation

The fourth national giant panda survey report indicates that 
China has 1,864 wild giant pandas (Ailuropoda melanoleuca). 
The adult giant panda populations have increased since past 
surveys. As a result, the IUCN downgraded the status of the 
giant panda from “endangered” to “vulnerable” in 2016. 

However, many domestic and foreign conservationists have 
doubts about the validity of this downgrade. Currently, the 
determination of whether a species is endangered depends on 
its population size but neglects changes in habitat quality and 
quantity.

Scale: Local
Study area: Giant Panda Habitat, China

Target 15.5: By 2020, take urgent action to reduce the degradation of natural habitats, halt the loss of 
biodiversity, and protect and prevent the extinction of threatened species.

Indicator 15.5.1: Red List Index.

Method

Data collection methods, analyses, and the sample area for 
the four national giant panda surveys are inconsistent, which 
makes comparisons difficult. This method attempts to provide 
comparable estimates for different surveys by using the same 
geographical area. The area contains 56 counties in Sichuan, 
Shaanxi, and Gansu provinces. The method is consistent for 
habitat extent and quality determination in conjunction with 
years of field investigations, and GIS and remote sensing data. 
This method is intended to produce a comprehensive analysis of 
giant panda habitats.

The giant panda habitats were evaluated using a model that 
combines elevation, slope, and forest cover. Elevation and 
slope data were obtained from a DEM with a 90-meter pixel 
resolution. Forest cover was assessed using 52 Landsat 
Multispectral Scanner (MSS)/TM images from the CAS 
scientific database (http:// www.csdb.cn/) and the China Remote 

Sensing Satellite Ground Station.

The fragmentation of panda habitats was evaluated using 
Fragstats 3.3 to estimate the number of isolated habitat units 
and the mean patch size. The number of isolated habitat units 
reflects the integrated effects of isolation by natural processes 
and human activities. The panda habitats were overlaid with 
isolation factors (e.g., major rivers, permanent snow cover, and 
major roads) to analyze the variation for habitat isolation in 
different periods. These factors represent major barriers to panda 
migration.

Several metrics were used to assess the effects of different 
biophysical and socioeconomic drivers. These include wetness 
indexes, elevation, human population, road density, and the 
number of nature reserves at the county level. These variables 
were then used to develop multiple general linear regression 
models to analyze the contribution of relevant factors.

Data used in this case

The remote sensing dataset consisted of Landsat MSS/TM 
images from 1976, 1988, 2001, and 2013. Other data included 
DEM data from SRTM, river data from the national geographic 

information center, road data from the transportation department, 
population data, economic data, and nature reserve boundary 
data.

Results and analysis

Results from the assessment of giant panda habitats revealed 
that the habitat area had increased by 0.4% between 2001 
and 2013. Moreover, the mean patch size of each habitat also 

increased by 1.8%, despite the devastating 2008 Wenchuan 
earthquake. This indicates that the implementation of ecological 
protection and restoration projects had resulted in an increase in 
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giant panda habitat area since 2001 (Figure 6-7). These projects 
included the construction of nature reserves, natural forest 
conservation programs, and the Grain-to-Green program.

However, the past 40 years have witnessed long-term commercial 
logging, rapid road construction, and natural disasters such as 
earthquakes and debris flows. Consequently, panda habitats 
have shrunk in area and become more fragmented in 2013 than 
when the giant pandas were still listed as endangered in 1976 
and 1988. The amount of isolated panda habitats in 2013 was 
three times higher than in 1976 (Figure 6-8), implying that 
communication barriers between panda populations have greatly 
increased.

Research suggests that the downgrade of giant pandas from 
endangered to vulnerable is reasonable in terms of population 
size. However, this change is not valid in terms of habitat 
change. Giant panda habitats may have increased in size 
since 2001. However, these habitats shrank and were more 
fragmented in 2013 than in 1988 when the species was listed as 
endangered. Currently, giant pandas are still facing many threats 
and challenges, and the downgrade is unreasonable. Future 
assessment of a species’ endangered level should consider both 
their population and habitat.

Figure 6-7. Change in giant panda habitats between 1976 and 
2013.

Figure 6-8. Change in road networks and panda habitat areas 
from 2001 to 2013.

Figure 6-9. Panda habitat in Sichuan Wolong Nature Reserve.

Although the panda population increased from 1976 to 2013, the habitat area was observed to be 
smaller and more fragmented in 2013 than in 1988. It is unreasonable to reduce the panda’s status 
from endangered to vulnerable solely based on the population. An assessment of a species’ endangered 
level requires considering both their population and habitat.

Highlights
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This report provides an evaluation of the practices for fulfilling 
SDG 15 through examples that are applied using Big Earth Data 
technologies and methods. These data products, models, and 
methods provide the ability for frequent, dynamic, quantitative, 
and objective evaluation of sustainability and spatial refinement 
for SDG 15 indicators. This report also provides support for 
comprehensive evaluation of global and regional sustainable 
development. The following indicators and factors will be 
investigated in future work.

(1) SDG 15.1.2: The integration models for habitats, human 
activities, environmental impacts, and climate change will be 
assessed. This is required to promote the coordination of three 
types of indicators, including: natural resource protection, the 
rational use of resources, and social sustainable development. 

The methods and data will be further improved to support the 
accurate assessment of forest ecosystem protection efforts. A 
comprehensive monitoring platform and evaluation index will 
be developed and applied to protected areas. This will enable 
the development of protection and management plans for other 
protected areas.

(2) SDG 15.5.1: The composition and spatial distribution of 
factors threatening China’s endangered species will be assessed 
to fulfill the objectives outlined by SDG 15.5.1. Moreover, 
the goal will be to provide information support for targeted 
conservation and management of endangered species, and to 
reverse losses in biodiversity. Lastly, global endangered species’ 
habitats will be analyzed in terms of habitat fragmentation and 
other influencing factors.

Conclusions

Outlook

The method presented in this case enables a more reasonable 
evaluation of panda habitat dynamics, and provides a powerful 
tool and data support for future conservation work.

This case approach can be applied to assess the habitats of other 
endangered species around the world, and analyze fragmentation 

status and other influential factors. Furthermore, this case study 
supports the implementation of SDG 15.5, which represents the 
need to “take urgent action to reduce the degradation of natural 
habitats, halt the loss of biodiversity, and protect and prevent the 
extinction of threatened species by 2020”.
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The 2030 Agenda for Sustainable Development emphasizes 
that the implementation of policies and the decision-making 
process should be based on scientific evidence. Continuous, 
timely data relevant to SDGs needs to be collected and 
analyzed to generate reliable, high-quality information to 
assist UN member states in making informed policies and 
decisions. 

This report presents case studies highlighting the use of Big 
Earth Data to evaluate 11 indicators in five SDGs, focusing 
on challenges in aspects of data, methodological models, and 
the decision-making process. Below is a summary of the five 
SDGs addressed in the report.

(1) This report puts forward a method to calculate indicator 
SDG 2.4.1, using diverse datasets including remote sensing 
data, statistical data, and ground survey data. The result 
shows that between 1987 and 2015, the environmental 
intensity of four indicators—land use, irrigation water 
consumption, nitrogen excess, and phosphorus excess—
dropped in approximately 26% of Chinese farmlands, and 
these farmlands have become more sustainable across all of 
the four indicators. 

(2) For indicators SDG 6.3.2, the case study develops 
datasets of the proportion of good ambient water quality at 
provincial levels in China providing new sources of data and 
methods for evaluating the indicators of SDG 6.

(3) For indicators SDG 11.2.1, SDG 11.3.1, SDG 11.4.1, 
SDG 11.6.2, and SDG 11.7.1, the report presents cases 
that monitor and evaluate these indicators. The evaluation 
methods for the SDG 11 indicators include methods for 
extracting information on public transport, populations, and 
global urban impervious surfaces. The report suggests a new 
overview of the connotation of SDG 11.4.1: “increasing 
capital investment per unit area to preserve and protect 
world cultural and natural heritage”. The report also provides 
data for evaluating the SDG 11 indicators including spatial 
distribution of global urban impervious surfaces with 
10-meter resolution.

(4) For SDG 14.1.1 and SDG 14.2.1, the report presents 
case studies that establish a system for comprehensive 

evaluation of eutrophication in coastal waters of China based 
on the “Pressure-State-Response” framework, and proposes 
a method for evaluating the typical marine ecosystems in 
China’s coastal waters. The evaluation, which employs 
machine learning techniques, is based on the characteristics 
of the structure of marine ecological systems, service 
functions, and ecological disasters/diseases. These cases 
provide new methods to evaluate SDG 14 indicators at the 
local scale. 

(5) For SDG 15.1.2, and SDG 15.5.1, two indicators related 
to life on land, this report takes proportion of important sites 
for terrestrial and freshwater diversity as research objects. 
The report  provides new data related to evaluating SDG 
15, such as the China Red List Index and Qianjiangyuan 
National Park, and proposes suggestions to assess a species' 
endangered level by comprehensivly considering both the 
numbers and the habitat environment of the giant panda. 

The cases presented in this report aim to improve scientific 
methods and explore new and innovative technologies to 
support sustainable development. By relying on Big Earth 
Data technology and analytical tools, researchers can collect 
and analyze data more efficiently, make up for the data 
gaps in current SDG indicator evaluations, increase the 
spatiotemporal resolution and accuracy of data, and provide 
new ways to evaluate and monitor Tier III indicators. 

The world must achieve the SDGs by 2030, which is 
extremely challenging in reality. We still face many 
challenges in leveraging Big Earth Data to support SDGs.

The global SDG indicators are divided into three main 
categories, and the global indicator framework provides a 
basis for all countries to evaluate the indicators. However, 
due to the differences in innovative capabilities of 
information and network technologies as well as Big Earth 
Data, there are method gaps for SDG evaluation between 
different countries and regions. Many countries, particularly 
developing countries, have no roadmap for effectively 
carrying out scientific evaluation of SDGs. By studying and 
developing a methodological system of Big Earth Data for 
SDG evaluation, which would be capable of being utilized at 
multiple spatial scales, it can assist member states of the UN 

Summary and Prospects
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at different developmental stages in reducing the differences 
in capabilities for SDG evaluation. 

Evaluation of SDG indicators requires a variety of data, 
including data related to land, transport, population, 
sanitation, economy, environment, and ecology, at different 
spatial and temporal scales, over long time intervals. 
Collecting this data is not an easy task for either developed 
or developing countries. Traditional ways of data acquisition 
must be reformed and efforts need to be intensified to 
develop Big Earth Data infrastructure in all member states of 
the UN. Data sharing and access through online channels and 
platforms need to be expanded to open up the information 
and data needed for SDG evaluation.

Globally, many organizations are committed to building data 
and information platforms. The UN is using information 
platforms such as the Sustainable Development Knowledge 
Platform and the TFM online platform to promote the sharing 
of information on SDGs. However, it lacks a formal policy 
and uniform standards involving data structure and data 
security among other important issues related to data access 
and privacy. A Big Earth Data framework could promote 
collaborative data sharing, and strengthen multi-divisional 
and multidisciplinary cooperation among government 
agencies, international organizations, and international 
science programs. Joint research can be promoted through 
sharing of information, methods, and data, which will help to 
develop technical standards and promote cooperation towards 
global and regional sustainable development. 

Over the past year, researchers have carried out pilot studies 
to develop Big Earth Data in support of SDGs. However, 
there are several actions that need to be taken: 

(1) Strengthen case studies on Big Earth Data supporting 
SDG indicators 

Data is a prominent bottleneck problem restricting accuracy 
of SDG evaluation. Among over 230 indicators of SDGs, 
39% have specific methods but lack data for evaluation (Tier 
II). Meanwhile, 16% of the indicators have neither specific 
methods nor data for evaluation (Tier III). The evaluation of 

Tier II and Tier III indicators based on Big Earth Data has 
great potential. The 11 SDG indicators in this report consist 
of three Tier I indicators, five Tier II indicators, and three  
Tier III indicators. In the future, the research will focus more 
on the Tier III indicators. It is necessary to study evaluation 
models based on Big Earth Data; give full consideration to 
the integration of satellite remote sensing data, network data, 
and ground station data (e.g., PM2.5 monitoring, water quality 
monitoring); develop new applicable models and methods on 
a global scale; carry out more comprehensive evaluations of 
SDG indicators; and create a series of cases for evaluating 
Big Earth Data SDG indicators that can be promoted and 
shared.

(2) Carry out comprehensive evaluation research on SDG 
indicators

The 2030 Agenda for Sustainable Development emphasizes 
the comprehensiveness and inseparability of sustainable 
development goals and their indicators, and the goals and 
indicators are interrelated and act on each other. SDGs, 
especially the goals closely related to the environment and 
resources of the Earth surface system, are characterized 
by large-scale, periodic changes. The macro, dynamic 
monitoring capabilities of Big Earth Data provide an 
important method for analyzing the interrelations and 
interactions between SDG indicators. In this report, research 
on monitoring multiple SDG indicators is presented. Going 
forward, Big Earth Data will be used to strengthen research 
on the interactions between sustainable development 
goals and indicators, explore new tools and methods, 
comprehensively quantify the degree of interactions 
between the goals and indicators, and provide more relevant 
information for decision support. 

(3) Strengthen collaboration with relevant governmental 
departments 

The SDGs are mainly guided and practiced by UN member 
states. In the process of achieving the SDGs, governmental 
departments have abundant policy-making consulting needs. 
Big Earth Data could assist all departments in making 
relevant policies in an efficient and targeted way, and it 
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is an important component of the research to strengthen 
contacts with relevant governmental departments; narrow 
the “scientific data divide” between scientists and decision 
makers; ensure that scientific data is acquired, understood, 
evaluated, and applied; and enhance the credibility of science 
in serving decision making. Under the TFM, the sharing 
of the SDG indicator monitoring data and results will be a 
good way to establish contacts with relevant governmental 
departments, and present an opportunity for creating a long-
term and efficient mechanism for Big Earth Data serving 
governmental decision making. 

(4) Strengthen collaborative research on SDGs with relevant 
organizations of the UN 

The UN has established a complicated governance system 
under the global indicator framework of SDGs, and the UN 
and all of its member states involve many stakeholders. Over 
the past year since its implementation, CAS has cooperated 
with UNEP and UNCCD to promote the TFM with Big 
Earth Data at its core. In the future, the research will expand 
cooperation with more SDG-related UN organizations, 
sharing the data, methods, and decision support cases related 
to SDGs with relevant organizations to support member 
countries, particularly developing countries. The research 
will also increase the scientific and technological capacity of 
member countries to use Big Earth Data for their sustainable 
development policies.
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Ma Keping Institute of Botany, Chinese Academy of Sciences
Mi Xiangcheng Institute of Botany, Chinese Academy of Sciences
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Nan Xi Institute of Mountain Hazards and Environment, Chinese Academy of Sciences
Niu Zhenguo Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences
Ouyang Zhiyun Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences
Qin Haining Institute of Botany, Chinese Academy of Sciences
Ren Haibao Institute of Botany, Chinese Academy of Sciences
Shangguan Donghui Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences
Shen Xiaoli Institute of Botany, Chinese Academy of Sciences
Song Xiaoyu Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences
Sun Xiaoxia Institute of oceanology, Chinese Academy of Sciences
Sun Zhongchang Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences
Wang Bao Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences
Wang Jianghao Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences
Wang Jin Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
Wang Juanle Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences
Wang Lei Planning and Design Institute of Forest Products Industry, National Forestry and Grassland Administration
Wang Li Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences
Wang Penglong Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences
Wang Shudong Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences
Wang Xiao Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences
Wang Xinyuan Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences
Wang Yunchen Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences
Wang Zifeng Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences
Wei Haishuo Shandong University of Technology
Wei Yanqiang Northwest Institute of Ecology and Environmental Resources, Chinese Academy of Sciences
Wu Bingfang Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences
Wu Wenbin Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences
Wu XiaoFei Chengdu University of Information Technology
Wu Zaixing Institute of Oceanology, Chinese Academy of Sciences
Xiao Yi Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences
Xu Weihua Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences
Yang Ruixia Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences
Yu Rencheng Institute of Oceanology, Chinese Academy of Sciences
Yu Xiubo Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences
Yuan Yongquan Institute of Oceanology, Chinese Academy of Sciences
Zhang Jingjing Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences
Zhang Lirong Chinese Academy of Environmental Planning
Zhang Lu Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences
Zhang Miao Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences
Zhang Shaoqing Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences
Zhang Zengxiang Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences
Zhao Lina Institute of Botany, Chinese Academy of Sciences
Zhao Xiaoli Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences
Zheng Yaomin Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences
Zhou Zhengxi Institute of Oceanology, Chinese Academy of Sciences
Zhu Li Institute of Botany, Chinese Academy of Sciences
Zhu Liang Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences
Zhu Xiulin Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences
Zuo Lijun Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences
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